Development Genes and Evolution

, Volume 218, Issue 5, pp 221–235 | Cite as

The lamprey in evolutionary studies

  • Joana Osório
  • Sylvie RétauxEmail author


Lampreys are a key species to study the evolution of morphological characters at the dawn of Craniates and throughout the evolution of the craniate’s phylum. Here, we review a number of research fields where studies on lampreys have recently brought significant and fundamental insights on the timing and mechanisms of evolution, on the amazing diversification of morphology and on the emergence of novelties among Craniates. We report recent example studies on neural crest, muscle and the acquisition of jaws, where important technical advancements in lamprey developmental biology have been made (morpholino injections, protein-soaked bead applications or even the first transgenesis trials). We describe progress in the understanding and knowledge about lamprey anatomy and physiology (skeleton, immune system and buccal secretion), ecology (life cycle, embryology), phylogeny (genome duplications, monophyly of cyclostomes), paleontology, embryonic development and the beginnings of lamprey genomics. Finally, in a special focus on the nervous system, we describe how changes in signaling, neurogenesis or neuronal migration patterns during brain development may be at the origin of some important differences observed between lamprey and gnathostome brains.


Agnathans Gnathostomes Evolution Diversification Novelty 



Our work on lamprey is supported by grants from the Scientific Interest Group (GIS) “Génomique Marine” and from the ANR-Neuro “Midline” to SR. We wish to thank Sylvie Mazan as the coordinator of the GIS collaborative grant, and for long term input and fruitful interactions on lamprey evo-devo. We also thank Didier Casane, Claude Thermes, Yves Daubenton, Marc Ekker and Kyle Martin for discussions and collaborations. A special thanks goes to Franck Bourrat, who shared with us his beautiful histological preparations. JO was supported by a doctoral fellowship from the Foundation for Science and Technology of the Portuguese Ministry of Science.


  1. Abalo XM, Villar-Cheda B, Anadon R, Rodicio MC (2005) Development of the dopamine-immunoreactive system in the central nervous system of the sea lamprey. Brain Res Bull 66:560–564PubMedCrossRefGoogle Scholar
  2. Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310:1970–1973PubMedCrossRefGoogle Scholar
  3. Alexandre P, Wassef M (2003) The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130:5331–5338PubMedCrossRefGoogle Scholar
  4. Alifragis P, Liapi A, Parnavelas JG (2004) Lhx6 regulates the migration of cortical interneurons from the ventral telencephalon but does not specify their GABA phenotype. J Neurosci 24:5643–5648PubMedCrossRefGoogle Scholar
  5. Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 19:535–541PubMedCrossRefGoogle Scholar
  6. Auclair F, Lund JP, Dubuc R (2004) Immunohistochemical distribution of tachykinins in the CNS of the lamprey Petromyzon marinus. J Comp Neurol 479:328–346PubMedCrossRefGoogle Scholar
  7. Bardack D, Zangerl R (1968) First fossil lamprey: a record from the Pennsylvanian of Illinois. Science 162:1265–1267PubMedCrossRefGoogle Scholar
  8. Beamish FWH, Potter IC (1975) The biology of the anadromous sea lamprey (Petromyzon marinus) in New Brunswick. J Zool 177:57–72CrossRefGoogle Scholar
  9. Butler AB, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, HobokenGoogle Scholar
  10. Chang MM, Zhang J, Miao D (2006) A lamprey from the Cretaceous Jehol biota of China. Nature 441:972–974PubMedCrossRefGoogle Scholar
  11. Cohn MJ (2002) Evolutionary biology: lamprey Hox genes and the origin of jaws. Nature 416:386–387PubMedCrossRefGoogle Scholar
  12. Damas H (1944) Recherches sur le développement de Lampetra fluviatilis L.: contribution à l'étude de la Céphalogenèse des Vertébrés. Arch Biol Paris 55:1–289Google Scholar
  13. de Arriba Mdel C, Pombal MA (2007) Afferent connections of the optic tectum in lampreys: an experimental study. Brain Behav Evol 69:37–68PubMedCrossRefGoogle Scholar
  14. de Miguel E, Rodicio MC, Anadon R (1990) Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol 302:529–542PubMedCrossRefGoogle Scholar
  15. Del Carmen De Andres M, Anadon R, Manso MJ, Gonzalez MJ (2002) Distribution of thyrotropin-releasing hormone immunoreactivity in the brain of larval and adult sea lampreys, Petromyzon marinus L. J Comp Neurol 453:323–335PubMedCrossRefGoogle Scholar
  16. Delarbre C, Escriva H, Gallut C, Barriel V, Kourilsky P, Janvier P, Laudet V, Gachelin G (2000) The complete nucleotide sequence of the mitochondrial DNA of the agnathan Lampetra fluviatilis: bearings on the phylogeny of cyclostomes. Mol Biol Evol 17:519–529PubMedGoogle Scholar
  17. Gage SH, Gage-Day M (1927) The anti-coagulating action of the secretion of the buccal glands of the lampreys (Petromyzon, Lampetra and Entosphenus). Science 66:82–84CrossRefGoogle Scholar
  18. Delarbre C, Gallut C, Barriel V, Janvier P, Gachelin G (2002) Complete mitochondrial DNA of the hagfish, Eptatretus burgeri: the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol 22:184–192PubMedCrossRefGoogle Scholar
  19. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968PubMedCrossRefGoogle Scholar
  20. Derobert Y, Baratte B, Lepage M, Mazan S (2002) Pax6 expression patterns in Lampetra fluviatilis and Scyliorhinus canicula embryos suggest highly conserved roles in the early regionalization of the vertebrate brain. Brain Res Bull 57:277–280PubMedCrossRefGoogle Scholar
  21. Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF (2006) Precraniate origin of cranial motoneurons. Proc Natl Acad Sci USA 103:8727–8732PubMedCrossRefGoogle Scholar
  22. Forey P, Janvier P (1993) Agnathans and the origin of jawed vertebrates. Nature 361:129–134CrossRefGoogle Scholar
  23. Fried C, Prohaska SJ, Stadler PF (2003) Independent Hox-cluster duplications in lampreys. J Exp Zoolog B Mol Dev Evol 299:18–25PubMedGoogle Scholar
  24. Frontini A, Zaidi AU, Hua H, Wolak TP, Greer CA, Kafitz KW, Li W, Zielinski BS (2003) Glomerular territories in the olfactory bulb from the larval stage of the sea lamprey Petromyzon marinus. J Comp Neurol 465:27–37PubMedCrossRefGoogle Scholar
  25. Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SF, Kuruppu S, Fung K, Hedges SB, Richardson MK et al (2006) Early evolution of the venom system in lizards and snakes. Nature 439:584–588PubMedCrossRefGoogle Scholar
  26. Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443:981–984PubMedCrossRefGoogle Scholar
  27. Gonzalez MJ, Yanez J Anadon R (1999) Afferent and efferent connections of the torus semicircularis in the sea lamprey: an experimental study. Brain Res 826:83–94PubMedCrossRefGoogle Scholar
  28. Gravel J, Brocard F, Gariepy JF, Lund JP, Dubuc R (2007) Modulation of respiratory activity by locomotion in lampreys. Neuroscience 144:1120–1132PubMedCrossRefGoogle Scholar
  29. Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Hellgren Kotaleski J (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165:221–234PubMedCrossRefGoogle Scholar
  30. Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res Brain Res Rev 40:92–106PubMedCrossRefGoogle Scholar
  31. Hammond KL, Whitfield TT (2006) The developing lamprey ear closely resembles the zebrafish otic vesicle: otx1 expression can account for all major patterning differences. Development 133:1347–1357PubMedCrossRefGoogle Scholar
  32. Hardisty MW, Potter IC (1971a) The Biology of Lampreys. Academic, LondonGoogle Scholar
  33. Hardisty MW, Potter IC (1971b) The general biology of adult lampreys. In: Hardisty MW, Potter IC (eds) The biology of lampreys. vol. 1. Academic, London, pp 127–206Google Scholar
  34. Horigome N, Myojin M, Ueki T, Hirano S, Aizawa S, Kuratani S (1999) Development of cephalic neural crest cells in embryos of Lampetra japonica, with special reference to the evolution of the jaw. Dev Biol 207:287–308PubMedCrossRefGoogle Scholar
  35. Imai KS, Satoh N, Satou Y (2002) Region specific gene expressions in the central nervous system of the ascidian embryo. Gene Expr Patterns 2:319–321PubMedCrossRefGoogle Scholar
  36. Irvine SQ, Carr JL, Bailey WJ, Kawasaki K, Shimizu N, Amemiya CT, Ruddle FH (2002) Genomic analysis of Hox clusters in the sea lamprey Petromyzon marinus. J Exp Zool 294:47–62PubMedCrossRefGoogle Scholar
  37. Ito N, Mita M, Takahashi Y, Matsushima A, Watanabe YG, Hirano S, Odani S (2007) Novel cysteine-rich secretory protein in the buccal gland secretion of the parasitic lamprey, Lethenteron japonicum. Biochem Biophys Res Commun 358:35–40PubMedCrossRefGoogle Scholar
  38. Janvier P, Lund R (1983) Hardistiella montanensis (Petromyzontida) from the Lower Carboniferous of Montana, with remarks on the affinities of the lampreys. J Vertebr Paleontol. 2:407–413CrossRefGoogle Scholar
  39. Janvier P (2006) Palaeontology: modern look for ancient lamprey. Nature 443:921–924PubMedCrossRefGoogle Scholar
  40. Jeffery WR, Strickler AG, Yamamoto Y (2004) Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 431:696–699PubMedCrossRefGoogle Scholar
  41. Joly JS, Osorio J, Alunni A, Auger H, Kano S, Retaux S (2007) Windows of the brain: towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 18:512–524PubMedCrossRefGoogle Scholar
  42. Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552PubMedCrossRefGoogle Scholar
  43. Kozmik Z, Holland ND, Kalousova A, Paces J, Schubert M, Holland LZ (1999) Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development 126:1295–304PubMedGoogle Scholar
  44. Kuraku S, Kuratani S (2006) Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences. Zoolog Sci 23:1053–1064PubMedCrossRefGoogle Scholar
  45. Kuratani S (2004) Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. J Anat 205:335–347PubMedCrossRefGoogle Scholar
  46. Kuratani S (2005a) Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: morphological and embryological significance of the premandibular-mandibular boundary. Zoology (Jena) 108:13–25Google Scholar
  47. Kuratani S (2005b) Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. J Anat 207:489–499PubMedCrossRefGoogle Scholar
  48. Kuratani S, Horigome N, Hirano S (1999) Developmental morphology of the head mesoderm and reevaluation of segmental theories of the vertebrate head: evidence from embryos of an agnathan vertebrate, Lampetra japonica. Dev Biol 210:381–400PubMedCrossRefGoogle Scholar
  49. Kuratani S, Kuraku S, Murakami Y (2002) Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 34:175–183PubMedCrossRefGoogle Scholar
  50. Kusakabe R, Kuratani S (2005) Evolution and developmental patterning of the vertebrate skeletal muscles: perspectives from the lamprey. Dev Dyn 234:824–834PubMedCrossRefGoogle Scholar
  51. Kusakabe R, Tochinai S, Kuratani S (2003) Expression of foreign genes in lamprey embryos: an approach to study evolutionary changes in gene regulation. J Exp Zoolog B Mol Dev Evol 296:87–97PubMedGoogle Scholar
  52. Laframboise AJ, Ren X, Chang S, Dubuc R, Zielinski BS (2007) Olfactory sensory neurons in the sea lamprey display polymorphisms. Neurosci Lett 414:277–281PubMedCrossRefGoogle Scholar
  53. Lee WJ, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139:873–887PubMedGoogle Scholar
  54. Lim Y, Golden JA (2007) Patterning the developing diencephalon. Brain Res Rev 53:17–26PubMedCrossRefGoogle Scholar
  55. Litman GW, Cannon JP, Dishaw LJ (2005) Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol 5:866–879PubMedCrossRefGoogle Scholar
  56. Lowery LA, Sive H (2004) Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech Dev 121:1189–1197PubMedCrossRefGoogle Scholar
  57. Mallatt J, Sullivan J (1998) 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Mol Biol Evol 15:1706–18PubMedGoogle Scholar
  58. Mallatt J, Winchell CJ (2007) Ribosomal RNA genes and deuterostome phylogeny revisite: more cyclostomes, elasmobranchs, reptiles and a brittle star. Mol Phylogenet and Evol 43:1005–1022CrossRefGoogle Scholar
  59. Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790PubMedCrossRefGoogle Scholar
  60. McCauley DW, Bronner-Fraser M (2002) Conservation of Pax gene expression in ectodermal placodes of the lamprey. Gene 287:29–39CrossRefGoogle Scholar
  61. McCauley DW, Bronner-Fraser M (2003) Neural crest contributions to the lamprey head. Development 130:317–337CrossRefGoogle Scholar
  62. McCauley DW, ronner-Fraser M (2004) Conservation and divergence of BMP2/4 genes in the lamprey: expression and phylogenetic analysis suggest a single ancestral vertebrate gene. Evol Dev 6:11–22Google Scholar
  63. McCauley DW, Bronner-Fraser M (2006) Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 441:750–752PubMedCrossRefGoogle Scholar
  64. McClellan AD (1994) Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations. J Neurophysiol 72:847–860PubMedGoogle Scholar
  65. Melendez-Ferro M, Perez-Costas E, Villar-Cheda B, Abalo XM, Rodriguez-Munoz R, Rodicio MC, Anadon R (2002a) Ontogeny of gamma-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey. J Comp Neurol 446:360–376PubMedCrossRefGoogle Scholar
  66. Melendez-Ferro M, Perez-Costas E, Villar-Cheda B, Rodriguez-Munoz R, Anadon R, Rodicio MC (2003) Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey. J Comp Neurol 464:17–35PubMedCrossRefGoogle Scholar
  67. Melendez-Ferro M Villar-Cheda B, Manoel Abalo X, Perez-Costas E, Rodriguez-Munoz R, Degrip WJ, Yanez J, Rodicio MC, Anadon R (2002b) Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study. J Comp Neurol 442:250–265CrossRefGoogle Scholar
  68. Menard A, Auclair F, Bourcier-Lucas C, Grillner S, Dubuc R (2007) Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus. J Comp Neurol 501:260–273PubMedCrossRefGoogle Scholar
  69. Meulemans D, Bronner-Fraser M (2002) Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns. Development 129:4953–4962PubMedGoogle Scholar
  70. Meulemans D, McCauley D, Bronner-Fraser M (2003) Id expression in amphioxus and lamprey highlights the role of gene cooption during neural crest evolution. Dev Biol 264:430–442PubMedCrossRefGoogle Scholar
  71. Murakami Y, Ogasawara M, Sugahara F, Hirano S, Satoh N, Kuratani S (2001) Identification and expression of the lamprey Pax6 gene: evolutionary origin of the segmented brain of vertebrates. Development 128:3521–3531PubMedGoogle Scholar
  72. Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 131:983–995PubMedCrossRefGoogle Scholar
  73. Murakami Y, Uchida K, Rijli FM, Kuratani S (2005) Evolution of the brain developmental plan: Insights from agnathans. Dev Biol 280:249–259PubMedCrossRefGoogle Scholar
  74. Myojin M, Ueki T, Sugahara F, Murakami Y, Shigetani Y, Aizawa S, Hirano S, Kuratani S (2001) Isolation of Dlx and Emx gene cognates in an agnathan species, Lampetra japonica, and their expression patterns during embryonic and larval development: conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. J Exp Zool 291:68–84PubMedCrossRefGoogle Scholar
  75. Neidert AH, Virupannavar V, Hooker GW, Langeland JA (2001) Lamprey Dlx genes and early vertebrate evolution. Proc Natl Acad Sci U S A 98:1665–1670PubMedCrossRefGoogle Scholar
  76. Nieuwenhuys R, Nicholson C (1998) Lampreys, Petromyzontoidea. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. vol. 1. Springer-Verlag, Berlin, pp 397–495Google Scholar
  77. Ogasawara M, Shigetani Y, Hirano S, Satoh N, Kuratani S (2000) Pax1/Pax9-related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan. Dev Biol 223:399–410PubMedCrossRefGoogle Scholar
  78. Ogasawara M, Shigetani Y, Suzuki S, Kuratani S, Satoh N (2001) Expression of thyroid transcription factor-1 (TTF-1) gene in the ventral forebrain and endostyle of the agnathan vertebrate, Lampetra japonica. Genesis 30:51–58PubMedCrossRefGoogle Scholar
  79. Or J (2006) A control system for a flexible spine belly-dancing humanoid. Artif Life 12:63–87CrossRefGoogle Scholar
  80. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkGoogle Scholar
  81. Osorio J, Mazan S Retaux S (2005) Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 288:100–112PubMedCrossRefGoogle Scholar
  82. Osorio J, Megias M, Pombal MA, Retaux S (2006) Dynamic expression of the LIM-homeodomain gene Lhx15 through larval brain development of the sea lamprey (Petromyzon marinus). Gene Expr Patterns 6:873–878PubMedCrossRefGoogle Scholar
  83. Ota KG, Kuraku S, Kuratani S (2007) Hagfish embryology with reference to the evolution of the neural crest. Nature 446:672–675PubMedCrossRefGoogle Scholar
  84. Ota KG, Kuratani S (2006) The history of scientific endeavors towards understanding hagfish embryology. Zoolog Sci 23:403–418PubMedCrossRefGoogle Scholar
  85. Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180PubMedCrossRefGoogle Scholar
  86. Pancer Z, Saha NR, Kasamatsu J, Suzuki T, Amemiya CT, Kasahara M, Cooper MD (2005) Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci U S A 102:9224–9229PubMedCrossRefGoogle Scholar
  87. Perez-Costas E, Melendez-Ferro M, Perez-Garcia CG, Caruncho HJ, Rodicio MC (2004) Reelin immunoreactivity in the adult sea lamprey brain. J Chem Neuroanat 27:7–21PubMedCrossRefGoogle Scholar
  88. Perez-Costas E, Melendez-Ferro M, Santos Y, Anadon R, Rodicio MC, Caruncho HJ (2002) Reelin immunoreactivity in the larval sea lamprey brain. J Chem Neuroanat 23:211–221PubMedCrossRefGoogle Scholar
  89. Pflieger JF, Dubuc R (2004) Vestibulo-reticular projections in adult lamprey: their role in locomotion. Neuroscience 129:817–829PubMedCrossRefGoogle Scholar
  90. Piavis GW (1971) Embryology. In: Hardisty MW, Potter IC (eds) The biology of Lampreys. vol. 1. Academic, London, pp 361–400Google Scholar
  91. Pierre-Simons J, Reperant J, Mahouche M, Ward R (2002) Development of tyrosine hydroxylase-immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis. J Comp Neurol 447:163–176PubMedCrossRefGoogle Scholar
  92. Pombal MA, El Manira A, Grillner S (1997a) Afferents of the lamprey striatum with special reference to the dopaminergic system: a combined tracing and immunohistochemical study. J Comp Neurol 386:71–91PubMedCrossRefGoogle Scholar
  93. Pombal MA, El Manira A, Grillner S (1997b) Organization of the lamprey striatum—transmitters and projections. Brain Res 766:249–254PubMedCrossRefGoogle Scholar
  94. Pombal MA, Marin O, Gonzalez A (2001) Distribution of choline acetyltransferase-immunoreactive structures in the lamprey brain. J Comp Neurol 431:105–126PubMedCrossRefGoogle Scholar
  95. Pombal MA, Puelles L (1999) Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol 414:391–422PubMedCrossRefGoogle Scholar
  96. Robertson B, Auclair F, Menard A, Grillner S, Dubuc R (2007) GABA distribution in lamprey is phylogenetically conserved. J Comp Neurol 503:47–63PubMedCrossRefGoogle Scholar
  97. Robertson B, Saitoh K, Menard A, Grillner S (2006) Afferents of the lamprey optic tectum with special reference to the GABA input: combined tracing and immunohistochemical study. J Comp Neurol 499:106–119PubMedCrossRefGoogle Scholar
  98. Root AR, Nucci NV, Sanford JD, Rubin BS, Trudeau VL, Sower SA (2005) In situ characterization of gonadotropin-releasing hormone-I, -III, and glutamic acid decarboxylase expression in the brain of the sea lamprey, Petromyzon marinus. Brain Behav Evol 65:60–70PubMedCrossRefGoogle Scholar
  99. Rovainen CM (1996) Feeding and breathing in lampreys. Brain Behav Evol 48:297–305PubMedCrossRefGoogle Scholar
  100. Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21:445–477PubMedCrossRefGoogle Scholar
  101. Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13:405–420PubMedCrossRefGoogle Scholar
  102. Shigetani Y, Sugahara F, Kawakami Y, Murakami Y, Hirano S, Kuratani S (2002) Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296:1316–1349PubMedCrossRefGoogle Scholar
  103. Shigetani Y, Sugahara F, Kuratani S (2005) A new evolutionary scenario for the vertebrate jaw. Bioessays 27:331–338PubMedCrossRefGoogle Scholar
  104. Shimeld SM (1999) The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog. Dev Genes Evol 209:40–47PubMedCrossRefGoogle Scholar
  105. Spokony RF, Aoki Y, Saint-Germain N, Magner-Fink E, Saint-Jeannet JP (2002) The transcription factor Sox9 is required for cranial neural crest development in Xenopus. Development 129:421–432PubMedGoogle Scholar
  106. Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP (2004) Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 32:686–694PubMedCrossRefGoogle Scholar
  107. Stock DW, Whitt GS (1992) Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257:787–789PubMedCrossRefGoogle Scholar
  108. Tahara Y (1988) Normal stages of development in the lamprey, Lampetra reissneri (Dybowski). Zoolog Sci 5:109–118Google Scholar
  109. Takatori N, Satou Y, Satoh N (2002) Expression of hedgehog genes in Ciona intestinalis embryos. Mech Dev 116:235–238PubMedCrossRefGoogle Scholar
  110. Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev Biol 308:606–620PubMedCrossRefGoogle Scholar
  111. Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Evolutionary biology: Hox genes and the evolution of jaws. Nature 429:262–263CrossRefGoogle Scholar
  112. Tomsa JM Langeland JA (1999) Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. Dev Biol 207:26–37CrossRefGoogle Scholar
  113. Tsuneki K (1986) A survey of occurrence of about 17 circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470PubMedGoogle Scholar
  114. Uchida K, Murakami Y, Kuraku S, Hirano S, Kuratani S (2003) Development of the adenohypophysis in the lamprey: evolution of epigenetic patterning programs in organogenesis. J Exp Zoolog B Mol Dev Evol 300:32–47PubMedGoogle Scholar
  115. Ueki T, Kuratani S, Hirano S, Aizawa S (1998) Otx cognates in a lamprey, Lampetra japonica. Dev Genes Evol 208:223–228PubMedCrossRefGoogle Scholar
  116. Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC et al (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5:e101PubMedCrossRefGoogle Scholar
  117. Vidal Pizarro I, Swain GP, Selzer ME (2004) Cell proliferation in the lamprey central nervous system. J Comp Neurol 469:298–310PubMedCrossRefGoogle Scholar
  118. Villar-Cheda B, Perez-Costas E, Melendez-Ferro M, Abalo XM, Rodriguez-Munoz R, Anadon R, Rodicio MC (2006) Cell proliferation in the forebrain and midbrain of the sea lamprey. J Comp Neurol 494:986–1006PubMedCrossRefGoogle Scholar
  119. Villar-Cheda B, Perez-Costas E, Melendez-Ferro M, Manoel Abalo X, Rodriguez-Munoz R, Anadon R, Celina Rodicio M (2002) Proliferating cell nuclear antigen (PCNA) immunoreactivity and development of the pineal complex and habenula of the sea lamprey. Brain Res Bull 57:285–287PubMedCrossRefGoogle Scholar
  120. Weigle C, Northcutt RG (1999) The chemoarchitecture of the forebrain of lampreys: evolutionary implications by comparisons with gnathostomes. Eur J Morphol 37:122–125PubMedCrossRefGoogle Scholar
  121. Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 282:1–13PubMedCrossRefGoogle Scholar
  122. Wright GM, Keeley FW, Robson P (2001) The unusual cartilaginous tissues of jawless craniates, cephalochordates and invertebrates. Cell Tissue Res 304:165–174PubMedCrossRefGoogle Scholar
  123. Wullimann MF, Knipp S (2000) Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anat Embryol (Berl) 202:385–400CrossRefGoogle Scholar
  124. Wullimann MF, Puelles L (1999) Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anat Embryol (Berl) 199:329–348CrossRefGoogle Scholar
  125. Wullimann MF, Vernier P (2006) Evolution of the nervous system in fishes. In: Kaas J (ed) Evolution of Nervous Systems. Academic, LondonGoogle Scholar
  126. Xiao R, Li QW, Perrett S, He RQ (2007) Characterisation of the fibrinogenolytic properties of the buccal gland secretion from Lampetra japonica. Biochimie 89:383–392PubMedCrossRefGoogle Scholar
  127. Zhang G, Cohn MJ (2006) Hagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates. Proc Natl Acad Sci U S A 103:16829–16833PubMedCrossRefGoogle Scholar
  128. Zhang G, Miyamoto MM, Cohn MJ (2006) Lamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton. Proc Natl Acad Sci U S A 103:3180–3185PubMedCrossRefGoogle Scholar
  129. Zhao Y, Marin O, Hermesz E, Powell A, Flames N, Palkovits M, Rubenstein JL, Westphal H (2003) The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc Natl Acad Sci USA 100:9005–9010PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.UPR 2197 “Développement, Evolution, Plasticité du Système Nerveux”Institut de Neurobiologie Alfred Fessard, C.N.R.S.Gif-sur-YvetteFrance

Personalised recommendations