Skip to main content
Log in

Differential expression of four protocadherin alpha and gamma clusters in the developing and adult zebrafish: DrPcdh2γ but not DrPcdh1γ is expressed in neuronal precursor cells, ependymal cells and non-neural epithelia

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Protocadherins are cadherin-like molecules with adhesive and signaling functions, in particular, during neuronal development. Large protocadherin (Pcdh) gene clusters are present in the genome of vertebrates. In the zebrafish, two Pcdh clusters are found on chromosomes 10 (DrPcdh1) and 14 (DrPcdh2), each divided into subclusters of DrPcdhα and DrPcdhγ family genes. In total, about 100 different DrPcdh molecules are predicted. We have analyzed the expression of the four DrPcdh subclusters and find that DrPcdh transcripts are upregulated in the developing zebrafish nervous system. In the adult fish brain, all four DrPcdh clusters are expressed in differentiated neurons, in particular, in the thalamic nuclei, tectum, and cerebellum. We show that expression patterns grossly overlap for each cluster but with regional differences and variations in strength of expression. Strikingly, the DrPcdh2γ cluster, distinct from the three other clusters, is also expressed in neuronal precursor cells and ependymal cells of the embryonic and adult nervous system, as well as in specific non-neuronal epithelia. Antibodies to a conserved motif in the constant region of DrPcdh2γ stain fiber tracts and neuropil of the zebrafish brain and cell–cell junctions in epithelia. Our results indicate that multiple DrPcdhs of the different clusters are expressed in differentiated zebrafish neurons, suggesting evolutionarily conserved functions of protocadherin clusters in cell adhesion and signaling. In addition, DrPcdh2γ may exert more specific roles in neuronal precursor and non-neural epithelial cells, which have not yet been described for mammalian Pcdhγ. Thus, our findings in zebrafish open new perspectives to examine these functions in other vertebrate model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adolf B, Chapouton P, Lam CS, Topp S, Tannhauser B, Strahle U, Gotz M, Bally-Cuif L (2006) Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 295:278–293

    Article  PubMed  CAS  Google Scholar 

  • Babb SG, Barnett J, Doedens AL, Cobb N, Liu Q, Sorkin BC, Yelick PC, Raymond PA, Marrs JA (2001) Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development. Dev Dyn 221:231–237

    Article  PubMed  CAS  Google Scholar 

  • Bitzur S, Kam Z, Geiger B (1994) Structure and distribution of N-cadherin in developing zebrafish embryos: morphogenetic effects of ectopic over-expression. Dev Dyn 201:121–136

    PubMed  CAS  Google Scholar 

  • Down M, Power M, Smith SI, Ralston K, Spanevello M, Burns GF, Boyd AW (2005) Cloning and expression of the large zebrafish protocadherin gene, Fat. Gene Expr Patterns 5:483–490

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom P, Johnsson CM, Ohlin LM (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436:92–110

    Article  PubMed  CAS  Google Scholar 

  • Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, Koide T, Kitsukawa T, Hamada S, Yagi T (2005) Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet 37:171–176

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Kemler R (2002) Protocadherins. Curr Opin Cell Biol 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Ebert M, Shan W, Phillips GR, Arndt K, Colman DR, Kemler R (2005) Differential expression of individual gamma-protocadherins during mouse brain development. Mol Cell Neurosci 29:603–616

    Article  PubMed  CAS  Google Scholar 

  • Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277

    Article  PubMed  CAS  Google Scholar 

  • Haas IG, Frank M, Veron N, Kemler R (2005) Presenilin-dependent processing and nuclear function of gamma-protocadherins. J Biol Chem 280:9313–9319

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Wang X, Suzuki ST (2002) Restricted expression of protocadherin 2A in the developing mouse brain. Brain Res Mol Brain Res 98:119–123

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Suzuki ST, Redies C (2003) The cadherin superfamily in neural development: diversity, function and interaction with other molecules. Front Biosci 8:d306–d355

    PubMed  CAS  Google Scholar 

  • Jontes JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3:231–237

    Article  PubMed  CAS  Google Scholar 

  • Junghans D, Haas IG, Kemler R (2005) Mammalian cadherins and protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol 17:446–452

    Article  PubMed  CAS  Google Scholar 

  • Kallenbach S, Khantane S, Carroll P, Gayet O, Alonso S, Henderson CE, Dudley K (2003) Changes in subcellular distribution of protocadherin gamma proteins accompany maturation of spinal neurons. J Neurosci Res 72:549–556

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  • Kohmura N, Senzaki K, Hamada S, Kai N, Yasuda R, Watanabe M, Ishii H, Yasuda M, Mishina M, Yagi T (1998) Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20:1137–1151

    Article  PubMed  CAS  Google Scholar 

  • Koudijs MJ, den Broeder MJ, Keijser A, Wienholds E, Houwing S, van Rooijen EMH, Geisler R, van Eden FJM (2005) The zebrafish mutants dre, uki and lep encode negative regulators of the hedgehog signaling pathway. PLOS Genet 1(2):e19

    Article  PubMed  CAS  Google Scholar 

  • Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M, Bally-Cuif L (2002) Parachute/N-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129:3281–3294

    PubMed  CAS  Google Scholar 

  • Liu Q, Sanborn KL, Cobb N, Raymond PA, Marrs JA (1999) R-cadherin expression in the developing and adult zebrafish visual system. J Comp Neurol 410:303–319

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  PubMed  CAS  Google Scholar 

  • Mueller T, Wullimann MF (2003) Anatomy of neurogenesis in the early zebrafish brain. Brain Res Dev Brain Res 140:137–155

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Hijikata T, Matsukawa M, Ishikawa H, Yorifuji H (2006) Zebrafish protocadherin 10 is involved in paraxial mesoderm development and somitogenesis. Dev Dyn 235:506–514

    Article  PubMed  CAS  Google Scholar 

  • Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572

    Article  PubMed  CAS  Google Scholar 

  • Noonan JP, Grimwood J, Danke J, Schmutz J, Dickson M, Amemiya CT, Myers RM (2004a) Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res 14:2397–2405

    Article  PubMed  CAS  Google Scholar 

  • Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM (2004b) Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res 14:354–366

    Article  PubMed  CAS  Google Scholar 

  • Phillips GR, Tanaka H, Frank M, Elste A, Fidler L, Benson DL, Colman DR (2003) Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J Neurosci 23:5096–5104

    PubMed  CAS  Google Scholar 

  • Redies C, Vanhalst K, Roy F (2005) Delta-protocadherins: unique structures and functions. Cell Mol Life Sci 62:2840–2852

    Article  PubMed  CAS  Google Scholar 

  • Reiss K, Maretzky T, Haas IG, Schulte M, Ludwig A, Frank M, Saftig P (2006) Regulated ADAM10-dependent ectodomain shedding of gamma-protocadherin C3 modulates cell-cell adhesion. J Biol Chem 281:21735–21744

    Article  PubMed  CAS  Google Scholar 

  • Rentzsch F, Kramer C, Hammerschmidt M (2003) Specific and conserved roles of TAp73 during zebrafish development. Gene 323:19–30

    Article  PubMed  CAS  Google Scholar 

  • Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100:431–440

    Article  PubMed  CAS  Google Scholar 

  • Seiler C, Finger-Baier KC, Rinner O, Makhankov YV, Schwarz H, Neuhauss SC, Nicolson T (2005) Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision. Development 132:615–623

    Article  PubMed  CAS  Google Scholar 

  • Tada MN, Senzaki K, Tai Y, Morishita H, Tanaka YZ, Murata Y, Ishii Y, Asakawa S, Shimizu N, Sugino H, Yagi T (2004) Genomic organization and transcripts of the zebrafish protocadherin genes. Gene 340:197–211

    Article  PubMed  CAS  Google Scholar 

  • Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 10:21–33

    Article  PubMed  CAS  Google Scholar 

  • Thisse C, Thisse B, Schilling TF, Postlethwait JH (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119:1203–1215

    PubMed  CAS  Google Scholar 

  • Vanhalst K, Kools P, Vanden Eynde E, van Roy F (2001) The human and murine protocadherin-beta one-exon gene families show high evolutionary conservation, despite the difference in gene number. FEBS Lett 495:120–125

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Su H, Bradley A (2002a) Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 16:1890–1905

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Weiner JA, Levi S, Craig AM, Bradley A, Sanes JR (2002b) Gamma protocadherins are required for survival of spinal interneurons. Neuron 36:843–854

    Article  PubMed  CAS  Google Scholar 

  • Weiner JA, Wang X, Tapia JC, Sanes JR (2005) Gamma protocadherins are required for synaptic development in the spinal cord. Proc Natl Acad Sci USA 102:8–14

    Article  PubMed  CAS  Google Scholar 

  • Westerfield M (1994) The zebrafish book: a guide for the laboratory use of zebrafish. University of Oregon Press, Eugene, Oregon

    Google Scholar 

  • Wu Q (2005) Comparative genomics and diversifying selection of the clustered vertebrate protocadherin genes. Genetics 169:2179–2188

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Maniatis T (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97:779–790

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11:389–404

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Knipp S (2000) Proliferation pattern changes in the zebrafish brain from embryonic through early postembryonic stages. Anat Embryol 202:385–400

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuoanatomy of the zebrafish brain: a topological atlas. Birkhäuser, Basel

    Google Scholar 

  • Zupanc GK, Hinsch K, Gage FH (2005) Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 488:290–319

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Rolf Kemler for his continuous support of this project. We thank Melanie Walter and Volker Haid for excellent technical assistance, Donatus Bönsch for supreme fish care, and Dr. Ingrid Haas and the members of the Hammerschmidt laboratory for many valuable discussions. In addition, we thank Dr. F. van Eeden for providing the probe for PCNA analysis. The contributions of M. Rodriguez-Guzman in the initial phase of the project are acknowledged. This study was done with support of the Max-Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Frank.

Additional information

Communicated by T. Hollemann

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Overview of primers used in RT-PCR and probe generation (DOC 23 kb)

Supplementary Figure S2

DrPcdh1α and DrPcdh2γ transcripts are expressed in epithelia of the gut Detection of DrPcdh1α (a) and DrPcdh2γ (b) transcripts on cross sections of gut epithelia of five day old fish. In the adult stomach epithelium (c-e), very low levels of DrPcdh1α remain (c). DrPcdh1γ transcripts are not expressed in the gut epithelium in of adult fish (d), whereas DrPcdh2γ transcript expression is maintained at high levels in the adult (e). Scale bars are 50 μm (GIF 392 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bass, T., Ebert, M., Hammerschmidt, M. et al. Differential expression of four protocadherin alpha and gamma clusters in the developing and adult zebrafish: DrPcdh2γ but not DrPcdh1γ is expressed in neuronal precursor cells, ependymal cells and non-neural epithelia. Dev Genes Evol 217, 337–351 (2007). https://doi.org/10.1007/s00427-007-0145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-007-0145-4

Keywords

Navigation