Skip to main content

Advertisement

Log in

A comparative study of sperm morphology, cytology and activation in Caenorhabditis elegans, Caenorhabditis remanei and Caenorhabditis briggsae

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Studies of sterile mutants in Caenorhabditis elegans have uncovered new insights into fundamental aspects of gamete cell biology, development, and function at fertilization. The genome sequences of C. elegans, Caenorhabditis briggsae and Caenorhabditis remanei allow for informative comparative studies among these three species. Towards that end, we have examined wild-type sperm morphology and activation (spermiogenesis) in each. Light and electron microscopy studies reveal that general sperm morphology, organization, and ultrastructure are similar in all three species, and activation techniques developed for C. elegans were found to work well in both C. briggsae and C. remanei. Despite important differences in the reproductive mode between C. remanei and the other two species, most genes required for spermiogenesis are conserved in all three. Finally, we have also examined the subcellular distribution of sperm epitopes in C. briggsae and C. remanei that cross-react with anti-sera directed against C. elegans sperm proteins. The baseline data in this study will prove useful for the future analysis and interpretation of sperm gene function across nematode species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken RJ, Koopman P, Lewis SE (2004) Seeds of concern. Nature 432:48–52

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arduengo PM, Appleberry OK, Chuang P, L’Hernault SW (1998) The presenilin protein family member SPE-4 localizes to an ER / Golgi derived organelle and is required for proper cytoplasmic partitioning during C. elegans spermatogenesis. Journal of Cell Science 111:3645–3654

    PubMed  CAS  Google Scholar 

  • Baird SE, Yen WC (2000) Reproductive isolation in Caenorhabditis: terminal phenotypes of hybrid embryos. Evol Dev 2(1):9–15

    Article  Google Scholar 

  • Baird SE, Sutherlin ME, Emmons SW (1992) Reproductive isolation in Rhabditidae (Nematoda: Secernentea); mechanisms that isolate six species of three genera. Evolution 46(3):585–594

    Article  Google Scholar 

  • Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–454

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Butler D (2004) The fertility riddle. Nature 432:38–39

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A (2005) The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132:2795–2808

    Article  PubMed  CAS  Google Scholar 

  • Cho S, Jin SW, Cohen A, Ellis RE (2004) A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res 14:1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Clark WH Jr, Moretti RL, Thomson WW (1967) Electron microscopic evidence for the presence of an acrosomal reaction in Ascaris lumbricoides var. suum. Exp Cell Res 47:643–647

    Article  PubMed  Google Scholar 

  • Fitch DHA, Thomas WK (1997) Evolution. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, (eds) C. Elegans II. Cold Spring Harbor: Cold Spring Harbor Laboratory. pp 815–850

    Google Scholar 

  • Foor WE (1968) Zygote formation in Ascaris lumbricoides (Nematoda). J Cell Biol 39:119–134

    Article  PubMed  CAS  Google Scholar 

  • Foor WE (1970) Spermatozoan morphology and zygote formation in nematodes. Biol Reprod 2:Suppl 2:120–177

    Google Scholar 

  • Garner MH, Garner WH, Gurd FR (1974) Recognition of primary sequence variations among sperm whale myoglobin components with successive proteolysis procedures. J Biol Chem 249:1513–1518

    PubMed  CAS  Google Scholar 

  • Geldziler B, Kadandale P, Singson A (2004) Molecular genetic approaches to studying fertilization in model systems. Reproduction 127:409–416

    Article  PubMed  CAS  Google Scholar 

  • Geldziler B, Chatterjee I, Singson A (2005) The genetic and molecular analysis of spe-19, a gene required for sperm activation in Caenorhabditis elegans. Dev Biol

  • Hill KL, L’Hernault SW (2001) Analyses of reproductive interactions that occur after heterospecific matings within the genus Caenorhabditis. Dev Biol 232:105–114

    Article  PubMed  CAS  Google Scholar 

  • Jamuar MP (1966) Studies of spermiogenesis in a nematode, Nippostrongylus brasiliensis. J Cell Biol 31:381–396

    Article  PubMed  CAS  Google Scholar 

  • Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DH (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci USA 101:9003–9008

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • LaMunyon CW, Ward S (1999) Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proceedings of the Royal Society, Series B 266:263–267

    Article  CAS  Google Scholar 

  • Lee DL, Anya AO (1967) The structure and development of the spermatozoon of Aspiculuris tetraptera (Nematoda). J Cell Sci 2:537–544

    PubMed  CAS  Google Scholar 

  • L’Hernault SW (1997) Spermatogenesis. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR, (eds) C. Elegans II. Cold Spring Harbor: Cold Spring Harbor Laboratory. pp 271–294

    Google Scholar 

  • Machaca K, DeFelice LJ, L’Hernault SW (1996) A novel chloride channel localizes to Caenorhabditis elegans spermatids and chloride channel blockers induce spermatid differentiation. Dev Biol 176:1–16

    Article  PubMed  CAS  Google Scholar 

  • Minniti AN, Sadler C, Ward S (1996) Genetic and molecular analysis of spe-27, a gene required for spermiogenesis in Caenorhabditis elegans hermaphrodites. Genetics 143:213–223

    PubMed  CAS  Google Scholar 

  • Mitreva M, Blaxter ML, Bird DM, McCarter JP (2005) Comparative genomics of nematodes. Trends Genet 21:573–581

    Article  PubMed  CAS  Google Scholar 

  • Muhlrad PJ, Ward S (2002) Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics 161:143–155

    PubMed  CAS  Google Scholar 

  • Nance J, Davis EB, Ward S (2000) spe-29 encodes a small predicted membrane protein required for the initiation of sperm activation in Caenorhabditis elegans. Genetics 156:1623–1633

    PubMed  CAS  Google Scholar 

  • Nance J, Minniti AN, Sadler C, Ward S (1999) spe-12 encodes a sperm cell surface protein that promotes spermiogenesis in Caenorhabditis elegans. Genetics 152:209–220

    PubMed  CAS  Google Scholar 

  • Nelson GA, Ward S (1980) Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell 19:457–464

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Thomson JN (1985) Monoclonal antibodies which distinguish certain classes of neuronal and supporting cells in the nervous tissue of the nematode Caenorhabditis elegans. J Neurosci 5:643–653

    PubMed  CAS  Google Scholar 

  • Putiri E, Zannoni S, Kadandale P, Singson A (2004) Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Carnorhabditis elegans. Dev Biol 272:448–459

    Article  PubMed  CAS  Google Scholar 

  • Reinke V, Gil IS, Ward S, Kazmer K (2004) Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131:311–323

    Article  PubMed  CAS  Google Scholar 

  • Shakes D, Ward S (1989a) Mutations That Disrupt the Morphogenesis and Localization of a Sperm-Specific Organelle in Caenorhabditis elegans. Developmental Biology 134:307–316

    Article  PubMed  CAS  Google Scholar 

  • Shakes DC, Ward S (1989b) Initiation of spermiogenesis in C. elegans: a pharmacological and genetic analysis. Dev Biol 134:189–200

    Article  PubMed  CAS  Google Scholar 

  • Singson A (2001) Every sperm is sacred: fertilization in Caenorhabditis elegans. Dev Biol 230:101–109

    Article  PubMed  CAS  Google Scholar 

  • Singson A, Mercer KB, L’Hernault SW (1998) The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell 93:71–79

    Article  PubMed  CAS  Google Scholar 

  • Stothard P, Pilgrim D (2003) Sex-determination gene and pathway evolution in nematodes. Bioessays 25:221–231

    Article  PubMed  CAS  Google Scholar 

  • Strauss JF 3rd, Kafrissen M (2004) Waiting for the second coming. Nature 432:43–45

    Article  PubMed  CAS  Google Scholar 

  • Sudhaus W, Kiontke K (1996) Phylogeny of Rhabditis subgenus Caenorhabditis (Rhabditidae, Nematoda). J Zoolog Syst Evol Res 34:217–233

    Google Scholar 

  • White J, Southgate E, Thomson J, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Sot Lond [Biol] 3:340

    Google Scholar 

  • Zannoni S, L’Hernault SW, Singson AW (2003) Dynamic localization of SPE-9 in sperm: a protein required for sperm-oocyte interactions in Caenorhabditis elegans. BMC Dev Biol 3:10

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Lisa Caiafa, Ken Irvine, Martha Soto, and members of the Singson Lab for helpful discussions, critical comments, and advice. We also wish to thank Sonia Zannoni for immunofluorescence assistance. The lab is supported by grants from the NIH (R01GM63089-01), Johnson and Johnson (Discovery Award), and the Charles & Johanna Busch Biomedical Fund. Additionally, Brian Geldziler received funding from NIH Biotechnology Training Grant (5T32GM08339). The Caenorhabditis Genetics Center provided some nematode strains and is funded by the NIH National Center for Research Resources (NCRR).

B. Geldziler, I. Chatterjee, and P. Kadandale contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Singson.

Additional information

Communicated by D.A. Weisblat

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geldziler, B., Chatterjee, I., Kadandale, P. et al. A comparative study of sperm morphology, cytology and activation in Caenorhabditis elegans, Caenorhabditis remanei and Caenorhabditis briggsae . Dev Genes Evol 216, 198–208 (2006). https://doi.org/10.1007/s00427-005-0045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0045-4

Keywords

Navigation