Skip to main content
Log in

The early vertebrate Danio rerio Mr 46000 mannose-6-phosphate receptor: biochemical and functional characterisation

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Mannose-6-phosphate receptors (MPRs) have been identified in a wide range of species from humans to invertebrates such as molluscs. A characteristic of all MPRs is their common property to recognize mannose-6-phosphate residues that are labelling lysosomal enzymes and to mediate their targeting to lysosomes in mammalian cells by the corresponding receptor proteins. We present here the analysis of full-length sequences for MPR 46 from zebrafish (Danio rerio) and its functional analysis. This is the first non-mammalian MPR 46 to be characterised. The amino acid sequences of the zebrafish MPR 46 displays 70% similarity to the human MPR 46 protein. In particular, all essential cysteine residues, the transmembrane domain as well as the cytoplasmic tail residues harbouring the signals for endocytosis and Golgi-localizing, γ-ear-containing, ARF-binding protein (GGA)-mediated sorting at the trans-Golgi network, are highly conserved. The zebrafish MPR 46 has the arginine residue known to be essential for mannose-6-phosphate binding and other additional characteristic residues of the mannose-6-phosphate ligand-binding pocket. Like the mammalian MPR 46, zebrafish MPR 46 binds to the multimeric mannose-6-phosphate ligand phosphomannan and can rescue the missorting of lysosomal enzymes in mammalian MPR-deficient cells. The conserved C-terminal acidic dileucine motif (DxxLL) in the cytoplasmic domain of zebrafish MPR 46 essential for the interaction of the GGAs with the receptor domains interacts with the human GGA1-VHS domain. Interestingly, the serine residue suggested to regulate the interaction between the tail and the GGAs in a phosphorylation-dependent manner is substituted by a proline residue in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boardman PE, Bonfield JK, Brown WRA, Carder C, Chalk SE,Croning MDR, Davies RM, Francis MD, Grafham DV, Hubbard SJ,Humphray SJ, Hunt PJ, Maddison M, McLaren SR, Niblett D, Overton IM, Rogers J, Scott CE, Taylor RG, Tickle C, Wilson SA (2004) Direct submission to the EMBL/GenBank/DDBJ databases

  • Bonifacino JS (2004) The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 5:23–32

    Article  PubMed  CAS  Google Scholar 

  • Chao HH, Waheed A, Pohlmann R, von Figura K (1990) Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes. EMBO J 9:3507–3513

    PubMed  CAS  Google Scholar 

  • Christoffels A, Koh EGL, Chia J, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    Article  PubMed  CAS  Google Scholar 

  • Dahms NM, Hancock MK (2002) P-type lectins. Biochim Biophys Acta 1572:317–340

    PubMed  CAS  Google Scholar 

  • Dennes A, Madsen P, Nielsen MS, Petersen CM, Pohlmann R (2002) The yeast Vsp10 cytoplasmic tail mediates lysosomal sorting in mammalian cells. J Biol Chem 277:12288–12293

    Article  PubMed  CAS  Google Scholar 

  • Dennes A, Cromme C, Suresh K, Siva Kumar N, Eble J, Hahnenkamp A, Pohlmann R (2005) The novel drosophila lysosomal enzyme receptor protein mediates lysosomal sorting in mammalian cells and binds mammalian and Drosophila GGA adaptors. J Biol Chem 280:12849–12857

    Article  PubMed  CAS  Google Scholar 

  • Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S (2002) Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297:1700–1703

    Article  PubMed  CAS  Google Scholar 

  • Filson AJ, Louvi A, Efstratiatis A, Robertson EJ (1993) Rescue of the T-associated maternal effect in mice carrying null mutations in Igf-2 and Igf2r, two reciprocally imprinted genes. Development 118:731–736

    PubMed  CAS  Google Scholar 

  • Ghosh P, Kornfeld S (2003) Phosphorylation induced conformational changes regulate GGAs 1 and 3 function at the trans-Golgi network. J Biol Chem 278:14543–14549

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Dahms NM, Kornfeld S (2003). Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212

    Article  PubMed  CAS  Google Scholar 

  • Glickman JN, Conibear E, Pearse BM (1989) Specificity of binding of clathrin adaptors to signals on the mannose-6-phosphate/insulin-like growth factor II receptor. EMBO J 8:1041–1047

    PubMed  CAS  Google Scholar 

  • He X, Chang WP, Koelsch G, Tang J (2002) Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2. FEBS Lett 524:183–187

    PubMed  CAS  Google Scholar 

  • Hille-Rehfeld A (1995) Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochem Biophys Acta 1241:177–194

    PubMed  Google Scholar 

  • Johnson KF, Kornfeld S (1992) A His-Leu-Leu sequence near the carboxyl terminus of the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor is necessary for the lysosomal enzyme sorting function. J Cell Biol 119:249–257

    Article  PubMed  CAS  Google Scholar 

  • Kametaka S, Mattera R, Bonifacino JS (2005) Epidermal growth factor-dependent phosphorylation of the GGA3 adaptor protein regulates its recruitment to membranes. Mol Cell Biol 25:7988–8000

    Article  PubMed  CAS  Google Scholar 

  • Kasper D, Dittmer F, von Figura K, Pohlmann R (1996) Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes. J Cell Biol 134:615–623

    Article  PubMed  CAS  Google Scholar 

  • Koester A, Saftig P, Matzner U, von Figura K, Peters C, Pohlmann, R (1993) Targeted disruption of the Mr 46000 mannose 6-phosphate receptor gene in mice results in the misrouting of lysosomal proteins. EMBO J 12:5219–5223

    PubMed  CAS  Google Scholar 

  • Koester A, von Figura K, Pohlmann R (1994) Mistargeting of lysosomal enzymes in Mr 46000 mannose 6-phosphate receptor deficient mice is compensated by carbohydrate specific endocytotic receptors. Eur J Biochem 224:685–689

    Article  PubMed  CAS  Google Scholar 

  • Klier HJ, von Figura K, Pohlmann R (1991) Isolation and analysis of the human Mr 46000 mannose 6-phosphate receptor gene. Eur J Biochem 197:23–28

    Article  PubMed  CAS  Google Scholar 

  • Klumperman J, Kuliawat R, Griffith JM, Geuze HJ, Arvan P (1998) Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 141:359–371

    Article  PubMed  CAS  Google Scholar 

  • Le Borgne R, Hoflack B (1997) Protein transport from the secretory to the endocytic pathway in mammalian cells. J Cell Biol 137:335–345

    Article  PubMed  Google Scholar 

  • Lobel P, Dahms NM, Kornfeld S (1988) Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor. J Biol Chem 263:2563–2570

    PubMed  CAS  Google Scholar 

  • Ludwig T, Eggenschwiler P, Fisher AJ, Efstratiadis ML, Efstratiadis A (1996) Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev Biol 177:517–535

    Article  PubMed  CAS  Google Scholar 

  • Matzner U, Hille-Rehfeld A, von Figura K, Pohlmann R (1996) Expression of the two mannose 6-phosphate receptors is spatially and temporally differential during mouse embryogenesis. Dev Dyn 207:11–24

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, Pohlmann R, Petersen CM (2001) The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20:2180–2190

    Article  PubMed  CAS  Google Scholar 

  • Olson LJ, Zhang J, Dahms NM, Kim JJ (2002) Twists and turns of the cation-dependent mannose 6-phosphate receptor. Ligand-bound versus ligand-free receptor. J Biol Chem 277:10156–10161

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann R, Nagel G, Schmidt B, Stein M, Lorkowski G, Krentler C, Cully J, Meyer HE, Grzeschik KH, Mersmann G, Hasilik A, von Figura K (1987) Cloning of a cDNA encoding the human cation-dependent mannose 6-phosphate specific receptor. Proc Natl Acad Sci U S A 84:5575–5579

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann R, Wendland M, Boeker C, von Figura K (1995) The two mannose 6-phosphate receptors transport distinct complements of lysosomal enzymes. J Biol Chem 270:27311–27318

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait J, Amores A, Cresko W, Singer A, Yan YL (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481–490

    Article  PubMed  CAS  Google Scholar 

  • Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS (2001) Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292:1712–1716

    Article  PubMed  CAS  Google Scholar 

  • Reddy ST, Chai W, Childs RA, Page JD, Feizi T, Dahms NM (2004) Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor. J Biol Chem 279:38658–38667

    Article  PubMed  CAS  Google Scholar 

  • Robinson MS, Bonifacino JS (2001). Adaptor-related proteins. Curr Opin Cell Biol 13:444–453

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Siva Kumar N, von Figura K (2002) Identification of the putative mannose 6-phosphate receptor (MPR 46) protein from the invertebrate mollusc. Biosci Rep 22:513–521

    Article  PubMed  Google Scholar 

  • Siva Kumar N, Hille-Rehfeld A, von Figura K (1997) Mannose 6-phosphate receptor proteins from reptiles and amphibians: evidence for the presence of MPR 300 and MPR 46. Comp Biochem Physiol 118B:805–809

    Google Scholar 

  • Siva Kumar N, Udaya Lakshmi Y, Hille-Rehfeld A, von Figura K (1999) Mannose 6-phosphate receptors (MPR 300 and MPR 46) from a teleostean fish (trout). Comp Biochem Physiol 123B:261–265

    Google Scholar 

  • Stockli J, Honing S, Rohrer J (2004) The acidic cluster of the CK2 site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) but not its phosphorylation is required for GGA1 and AP-1 binding. J Biol Chem 279:23542–23549

    Article  PubMed  CAS  Google Scholar 

  • Takatsu H, Katoh Y, Shiba Y, Nakayama K (2001) Golgi-localizing, gamma-adapting ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem 276:28541–28524

    Article  PubMed  CAS  Google Scholar 

  • Udaya Lakshmi Y, Siva Kumar N, Schu P, von Figura K, Hille-Rehfeld A (2000) Conserved cassette structure of vertebrate Mr 300 kDa mannose 6-phosphate receptors: partial cDNA sequence of fish MPR 300. Comp Biochem Physiol 127:433–441

    Article  PubMed  Google Scholar 

  • Waheed A, von Figura K (1990) Rapid equilibrium between monomeric, dimeric and tetrameric forms of the 46-kDa mannose 6-phosphate receptor at 37 degrees C. Possible relation to the function of the receptor. Eur J Biochem 193:47–54

    Article  PubMed  CAS  Google Scholar 

  • Wendland M, Hille A, Nagel G, Waheed A, von Figura K, Pohlmann R (1989) Synthesis of a truncated Mr 46000 mannose 6-phosphate receptor that is secreted and retains ligand binding. Biochem J 260:201–206

    PubMed  CAS  Google Scholar 

  • Zhu Y, Doray B, Poussu A, Lehto,VP, Kornfeld S (2001) Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292:1716–1718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank VWS, Hannover, Germany, for the support through a research grant to Prof. Dr. Siva Kumar, India, Prof. Dr. R. Pohlmann and Prof. Dr. von Figura, Germany, I/76098 and I/78913, and the Department of Biochemistry, University of Hyderabad, India, for support. We would like to thank Prof. Byrappa Venkatesh, Singapore, for his comments on the fish genome, Daniela Brinkmann for excellent technical assistance and Roberto Bresciani, University of Brescia, Italy, for providing the GFP human MPR 46 expression plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Pohlmann.

Additional information

Communicated by M. Hammerschmidt

The zebrafish MPR 46 sequence data have been submitted to the GenBank database under accession no. DQ089037.

Electronic supplementary material

Fig. S1

Analysis of generated MPR-deficient FLP-In cells. MPR-deficient MEF [mpr(-/-)]were stably transfected with pFRT/laczeo to generate a single FLPrecombinase target site (FRT). After selection with Zeocin stable foci (FLP2, FLP5, and FLP7) were screened by Southern blotting to identify those that have a single integration site. A 1100 bp EcoRI fragment from pFRT/laczeo was used as probe. Commercially available FLP-In-NIH3T3 cells were used as control (Invitrogen, Karlsruhe, Germany). (GIF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koduru, S., Vegiraju, S.R., Nadimpalli, S.K. et al. The early vertebrate Danio rerio Mr 46000 mannose-6-phosphate receptor: biochemical and functional characterisation. Dev Genes Evol 216, 133–143 (2006). https://doi.org/10.1007/s00427-005-0043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0043-6

Keywords

Navigation