Skip to main content
Log in

Expression of the telomeric retrotransposon HeT-A in Drosophila melanogaster is correlated with cell proliferation

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Drosophila melanogaster extends its telomeres by transposition of two non-LTR retrotransposons, HeT-A and TART, to chromosome ends. We have determined the tissue-specific expression of these two elements by whole-mount in situ hybridization with digoxigenin-labeled RNA sense and antisense probes in the germ line and in a variety of larval tissues during normal development in the wild type and in tissues of mutants that cause overproliferation. Our results indicate that transcript levels, which are a key component in the process of telomere elongation in D. melanogaster, are correlated with cell proliferation in normal tissues and that RNA levels are elevated in growth-stimulated tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–H
Fig. 3
Fig. 4
Fig. 5A–E

Similar content being viewed by others

References

  • Aisner DL, Wright WE, Shay JW (2002) Telomerase regulation: not just flipping the switch. Curr Opin Genet Dev 12:80–85

    CAS  PubMed  Google Scholar 

  • Aparicio OM, Gottschling DE (1994) Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Gene Dev 8:1133–1146

    CAS  Google Scholar 

  • Belair CD, Yeager TR, Lopez PM, Reznikoff CA (1997) Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc Natl Acad Sci USA 94:13677–13682

    Google Scholar 

  • Biessmann H, Mason JM, Ferry K, d’Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML (1990) Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61:663–673

    CAS  PubMed  Google Scholar 

  • Biessmann H, Champion LE, O’Hair M, Ikenaga K, Kasravi B, Mason JM (1992) Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J 11:4459–4469

    CAS  PubMed  Google Scholar 

  • Biessmann H, Kasravi B, Bui T, Fujiwara G, Champion LE, Mason JM (1994) Comparison of two active HeT-A retroposons of Drosophila melanogaster. Chromosoma 103:90–98

    Article  CAS  PubMed  Google Scholar 

  • Biessmann H, Walter MF, Mason JM (1997) Drosophila telomere elongation. Ciba Found Symp 211:53–67

    CAS  PubMed  Google Scholar 

  • Biessmann H, Walter MF, Le D, Chuan S, Yao JG (1999) Moose, a new family of LTR-retrotransposons in the mosquito Anopheles gambiae. Insect Mol Biol 8:201–212

    CAS  PubMed  Google Scholar 

  • Bodnar AG, Kim NW, Effros RB, Chiu CP (1996) Mechanism of telomerase induction during T cell activation. Exp Cell Res 228:58–64

    Article  CAS  PubMed  Google Scholar 

  • Buchkovich KJ, Greider CW (1996) Telomerase regulation during entry into the cell cycle in normal human T cells. Mol Biol Cell 7:1443–1454

    CAS  PubMed  Google Scholar 

  • Campos-Ortega J, Knust E (1990) Defective ommatidial cell assembly leads to defective morphogenesis: a phenotypic analysis of the E(spl)D mutation of Drosophila melanogaster. Roux’s Arch Dev Biol 198:286–294

  • Chaboissier M-C, Busseau I, Prosser J, Finnegan DJ, Bucheton A (1990) Identification of a potential intermediate for transposition of the LINE-like I factor in Drosophila melanogaster. EMBO J 9:3557–3563

    CAS  PubMed  Google Scholar 

  • Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21:553–563

    Article  CAS  PubMed  Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Petrov DA, Pavlova MN, Koga A, Kurenova EV, Hartl DL (1992) A repetitive DNA element, associated with telomeric sequences in Drosophila melanogaster, contains open reading frames. Chromosoma 102:32–40

    CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML (1997) Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell 88:647–655

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Traverse KL, Hogan NC, DeBaryshe PG, Pardue ML (1999) The two Drosophila telomeric transposable elements have very different patterns of transcription. Mol Cell Biol 19:873–881

    CAS  PubMed  Google Scholar 

  • Diede SJ, Gottschling DE (1999) Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerase α and δ. Cell 99:723–733

    CAS  PubMed  Google Scholar 

  • Ding D, Lipshitz HD (1994) Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis. Genet Res 64:167–181

    CAS  PubMed  Google Scholar 

  • Dionne I, Wellinger RJ (1998) Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acid Res 26:5365–5371

    Article  CAS  PubMed  Google Scholar 

  • Ducrest AL, Szutorisz H, Lingner J, Nabholz M (2002) Regulation of the human telomerase reverse transcriptase gene. Oncogene 21:541–552

    Article  CAS  PubMed  Google Scholar 

  • Emori Y, Shiba T, Kanaya S, Inouye S, Yuki S, Saigo K (1985) The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. Nature 315:773–776

    CAS  PubMed  Google Scholar 

  • Fanti L, Giovinazzo G, Berloco M, Pimpinelli S (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 2:527–538

    CAS  PubMed  Google Scholar 

  • Filatov DA, Morozova TV, Pasyukova EG (1998) Age-dependent copia transposition rate is positively associated with copia transcript abundance in a Drosophila melanogaster isogenic line. Mol Gen Genet 258:646–654

    Article  CAS  PubMed  Google Scholar 

  • George JA, Pardue ML (2003) The promoter of the heterochromatic Drosophila telomeric retrotransposon, HeT-A, is active when moved into euchromatic locations. Genetics 163:625–635

    CAS  PubMed  Google Scholar 

  • Golubovsky MD (1978) The “lethal giant larvae”—the most frequent second chromosome lethal in natural populations of D. melanogaster. Dros Inform Serv 53:179

    Google Scholar 

  • Golubovsky MD, Konev AY, Walter MF, Biessmann H, Mason JM (2001) Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics 158:1111–1123

    CAS  PubMed  Google Scholar 

  • Gorelova TV, Resnick NL, Schuppe NG (1989) Retrotransposon transposition intermediates are encapsidated into virus-like particles. FEBS Lett 244:307–310

    Article  CAS  PubMed  Google Scholar 

  • Green MM, Shepherd SH (1979) Genetic instability in Drosophila melanogaster: the induction of specific chromosome 2 deletions by MR elements. Genetics 92:823–832

    CAS  PubMed  Google Scholar 

  • Greider CW (1999) Telomerase activation—one step on the road to cancer? Trends Genet 15:109–112

    Google Scholar 

  • Haoudi A, Kim MH, Champion S, Best-Belpomme M, Maisonhaute C (1995) The gag polypeptides of the Drosophila 1731 retrotransposon are associated to virus-like particles and to nuclei. FEBS Lett 377:67–72

    Article  CAS  PubMed  Google Scholar 

  • Haoudi A, Rachidi M, Kim M-H, Champion S, Best-Belpomme M, Maisonhaute C (1997) Developmental expression analysis of the 1731 retrotransposon reveals an enhancement of gag-pol frameshifting in males of Drosophila melanogaster. Gene 196:83–93

    Article  CAS  PubMed  Google Scholar 

  • Harle-Bachor C, Boukamp P (1996) Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc Natl Acad Sci USA 93:6476–6481

    CAS  PubMed  Google Scholar 

  • Hiyama E, Tatsumoto N, Kodama T, Hiyama K, Shay JW, Yokoyama T (1996) Telomerase activity in human intestine. Int J Oncol 9:453–458

    CAS  Google Scholar 

  • Hofbauer A, Campos-Ortega JA (1990) Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol 198:264–274

    Google Scholar 

  • Holt SE, Wright WE, Shay JW (1996) Regulation of telomerase activity in immortal cell lines. Mol Cell Biol 16:2932–2939

    CAS  PubMed  Google Scholar 

  • Holt SE, Aisner DL, Shay JW, Wright WE (1997) Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci USA 94:10687–10692

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149:134–148

    CAS  PubMed  Google Scholar 

  • Jensen S, Gassama MP, Heidmann T (1999a) Cosuppression of I transposon in Drosophila by I-containing sense and antisense transgenes. Genetics 153:1767–1774

    CAS  PubMed  Google Scholar 

  • Jensen S, Gassama MP, Heidmann T (1999b) Taming of transposable elements by homology-dependent gene silencing. Nat Genet 21:209–212

    CAS  PubMed  Google Scholar 

  • Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546

    CAS  PubMed  Google Scholar 

  • Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20:7634–7642

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu H, Nakanishi A (1998) How do animal DNA viruses get into the nucleus? Annu Rev Microbiol 52:627–686

    Article  CAS  PubMed  Google Scholar 

  • Kyo S, Takakura M, Kohama T, Inoue M (1997) Telomerase activity in human endometrium. Cancer Res 57:610–614

    CAS  PubMed  Google Scholar 

  • Lachaume P, Bouhidel K, Mesure M, Pinon H (1992) Spatial and temporal expression of the I factor during oogenesis in Drosophila melanogaster. Development 115:729–735

    CAS  PubMed  Google Scholar 

  • Laroche T, Martin SG, Tsai-Pflugfelder M, Gasser SM (2000) The dynamics of yeast telomeres and silencing proteins through the cell cycle. J Struct Biol 129:159–174

    Article  CAS  PubMed  Google Scholar 

  • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–1093

    CAS  PubMed  Google Scholar 

  • Malinsky S, Bucheton A, Busseau I (2000) New insights on homology-dependent silencing of I factor activity by transgenes containing ORF1 in Drosophila melanogaster. Genetics 156:1147–1155

    CAS  PubMed  Google Scholar 

  • Marcand S, Brevet V, Mann C, Gilson E (2000) Cell cycle restriction of telomere elongation. Curr Biol 10:487–490

    Article  CAS  PubMed  Google Scholar 

  • Mason JM, Biessmann H (1995) The unusual telomeres of Drosophila. Trends Genet 11:58–62

    CAS  PubMed  Google Scholar 

  • Mason JM, Konev AY, Biessmann H (2003a) Telomeric position effect in Drosophila melanogaster reflects a telomere length control mechanism. Genetica 117:319–325

    Article  CAS  PubMed  Google Scholar 

  • Mason JM, Konev AY, Golubovsky MD, Biessmann H (2003b) Cis- and trans-acting influences on telomeric position effect in Drosophila melanogaster detected with a subterminal transgene. Genetics 163:917–930

    CAS  PubMed  Google Scholar 

  • McLean C, Bucheton A, Finnegan DJ (1993) The 5′ untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol Cell Biol 13:1042–1050

    CAS  PubMed  Google Scholar 

  • Melnikova L, Georgiev P (2002) Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. Genetics 162:1301–1312

    CAS  PubMed  Google Scholar 

  • Milan M, Campuzano S, Garcia-Bellido A (1996) Cell cycling and patterned cell proliferation in the wing primordium of Drosophila. Proc Natl Acad Sci USA 93:640–645

    Article  CAS  PubMed  Google Scholar 

  • Mizrokhi LJ, Georgieva SG, Ilyin YV (1988) Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from an internal promoter by RNA polymerase II. Cell 54:685–691

    CAS  PubMed  Google Scholar 

  • Pasyukova E, Nuzhdin S, Li W, Flavell AJ (1997) Germ line transposition of the copia retrotransposon in Drosophila melanogaster is restricted to males by tissue-specific control of copia RNA levels. Mol Gen Genet 255:115–124

    Article  CAS  PubMed  Google Scholar 

  • Priimägi AF, Mizrokhi LJ, Ilyin YV (1988) The Drosophila mobile element jockey belongs to LINEs and contains coding sequences homologous to some retroviral proteins. Gene 70:253–252

    Article  PubMed  Google Scholar 

  • Ramirez RD, Wright WE, Shay JW, Taylor RS (1997) Telomerase activity concentrates in the mitotically active segments of human hair follicles. J Invest Dermatol 108:113–117

    CAS  PubMed  Google Scholar 

  • Rashkova S, Karam SE, Kellum R, Pardue ML (2002a) Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J Cell Biol 159:397–402

    Article  CAS  PubMed  Google Scholar 

  • Rashkova S, Karam SE, Pardue ML (2002b) Element-specific localization of Drosophila retrotransposon Gag proteins occurs in both nucleus and cytoplasm. Proc Natl Acad Sci USA 99:3621–3626

    Article  CAS  PubMed  Google Scholar 

  • Richardson H, O’Keefe LV, Marty T, Saint R (1995) Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121:3371–3379

    CAS  PubMed  Google Scholar 

  • Savitsky M, Kravchuk O, Melnikova L, Georgiev P (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster. Mol Cell Biol 22:3204–3218

    Article  CAS  PubMed  Google Scholar 

  • Schubiger M, Palka J (1987) Changing spatial patterns of DNA replication in the developing wing of Drosophila. Dev Biol 123:145–153

    CAS  PubMed  Google Scholar 

  • Sheen FM, Levis RW (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA 91:12510–12514

    CAS  PubMed  Google Scholar 

  • Siriaco GM, Cenci G, Haoudi A, Champion LE, Zhou C, Gatti M, Mason JM (2002) Telomere elongation (Tel), a new mutation in Drosophila melanogaster that produces long telomeres. Genetics 160:235–245

    CAS  PubMed  Google Scholar 

  • Smith CD, Smith DL, DeRisi JL, Blackburn EH (2003) Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell 14:556–570

    Article  CAS  PubMed  Google Scholar 

  • Tatout C, Dosquier M, Lachaume P, Mesure M, Lecher P, Pinon H (1994) Germ-line expression of a functional LINE from Drosophila melanogaster: fine characterization allows for potential investigations of trans-regulators. Int J Dev Biol 38:27–33

    CAS  PubMed  Google Scholar 

  • Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localisation of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85

    CAS  PubMed  Google Scholar 

  • Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the CNS of Drosophila melanogaster. Dev Biol 125:146–157

    Google Scholar 

  • Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H (1995) DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104:229–241

    Article  CAS  PubMed  Google Scholar 

  • Watson KL, Justice RW, Bryant PJ (1994) Drosophila in cancer research: the first fifty tumor suppressor genes. J Cell Sci Suppl 18:19–33

    CAS  PubMed  Google Scholar 

  • Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez Arias A (eds) The development of Drosophila. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp 1277–1325

  • Woods DF, Bryant PJ (1989) Molecular cloning of the lethal(1)discs large-1 oncogene of Drosophila. Dev Biol 134:222–235

    CAS  PubMed  Google Scholar 

  • Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Kanda H, Takamatsu N, Togashi S, Kondo S, Miyake T, Sakaki Y, Shiba T (1992) Efficient amplification of Drosophila simulans copia directed by high-level reverse transcriptase activity associated with copia virus-like particles. Gene 120:191–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank James M. Mason for his continuous input, helpful discussions and for critically reading the manuscript. The jockey DNA was kindly provided by Gary Karpen and the dlg1 and wts tumor suppressor mutants by Peter J. Bryant. We also thank Heidi Theise for advice with the in situ hybridization technique. This project was supported by the U.S. Public Health Service grant GM-56729 to H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Biessmann.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, M.F., Biessmann, H. Expression of the telomeric retrotransposon HeT-A in Drosophila melanogaster is correlated with cell proliferation. Dev Genes Evol 214, 211–219 (2004). https://doi.org/10.1007/s00427-004-0400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-004-0400-x

Keywords

Navigation