Skip to main content
Log in

Temporal integration of feature probability distributions

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Humans are surprisingly good at learning the statistical characteristics of their visual environment. Recent studies have revealed that not only can the visual system learn repeated features of visual search distractors, but also their actual probability distributions. Search times were determined by the frequency of distractor features over consecutive search trials. The search displays applied in these studies involved many exemplars of distractors on each trial and while there is clear evidence that feature distributions can be learned from large distractor sets, it is less clear if distributions are well learned for single targets presented on each trial. Here, we investigated potential learning of probability distributions of single targets during visual search. Over blocks of trials, observers searched for an oddly colored target that was drawn from either a Gaussian or a uniform distribution. Search times for the different target colors were clearly influenced by the probability of that feature within trial blocks. The same search targets, coming from the extremes of the two distributions were found significantly slower during the blocks where the targets were drawn from a Gaussian distribution than from a uniform distribution indicating that observers were sensitive to the target probability determined by the distribution shape. In Experiment 2, we replicated the effect using binned distributions and revealed the limitations of encoding complex target distributions. Our results demonstrate detailed internal representations of target feature distributions and that the visual system integrates probability distributions of target colors over surprisingly long trial sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Open Science Framework repository, available at: https://www.osf.io/hjpb2/.

References

  • Acerbi, L., Wolpert, D. M., & Vijayakumar, S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PLoS Computational Biology, 8(11), 1–19.

    Article  Google Scholar 

  • Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-relevant features. Journal of Experimental Psychology: Human Perception and Performance, 38, 580–584. https://doi.org/10.1037/a0027885

    Article  PubMed  Google Scholar 

  • Ásgeirsson, Á. G., Kristjánsson, Á., & Bundesen, C. (2014). Independent priming of location and color in identification of briefly presented letters. Attention, Perception and Psychophysics, 76, 40–48.

    Article  PubMed  Google Scholar 

  • Becker, M. W., Hemsteger, S., & Peltier, C. (2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23(9), 1150–1167. https://doi.org/10.1080/13506285.2016.1149532

    Article  Google Scholar 

  • Becker, S. I. (2010). Oculomotor capture by colour singletons depends on intertrial priming. Vision Research, 50, 2116–2126. https://doi.org/10.1016/j.visres.2010.08.001

    Article  PubMed  Google Scholar 

  • Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 10 433–436

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523–547. https://doi.org/10.1037/0033-295X.97.4.523

    Article  PubMed  Google Scholar 

  • Bundesen, C., Habekost, T., & Kyllingsbaek, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112, 291–328. https://doi.org/10.1037/0033-295X.112.2.291

    Article  PubMed  Google Scholar 

  • Carlisle, N. B., Arita, J. T., Pardo, D., & Woodman, G. F. (2011). Attentional templates in visual working memory. The Journal of Neuroscience, 31, 9315–9322. https://doi.org/10.1523/JNEUROSCI.1097-11.2011

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalk, M., Seitz, A. R., & Seriès, P. (2010). Rapidly learned stimulus expectations alter perception of motion. Journal of Vision, 10(8):2, 1–18. http://www.journalofvision.org/content/10/8/2. https://doi.org/10.1167/10.8.2.

  • Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how and where. Current Opinion in Psychology, 29, 135–147. https://doi.org/10.1016/j.copsyc.2019.02.004

    Article  PubMed  Google Scholar 

  • Chen, J., Leber, A. B., & Golomb, J. D. (2019). Attentional capture alters feature perception. Journal of Experimental Psychology: Human Perception and Performance, 45(11), 1443.

    PubMed  Google Scholar 

  • Chetverikov, A., Campana, G., & Kristjansson, A. (2020). Probabilistic rejection templates in visual working memory. Cognition, 196, 104075

  • Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196–210.

    Article  PubMed  Google Scholar 

  • Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017a). Rapid learning of visual ensembles. Journal of Vision, 17(2), 21. https://doi.org/10.1167/17.2.21 1–15.

    Article  PubMed  Google Scholar 

  • Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Representing color ensembles. Psychological Science, 28(10), 1510–1517. https://doi.org/10.1177/0956797617713787

    Article  PubMed  Google Scholar 

  • Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017c). Set size manipulations reveal the boundary conditions of perceptual ensemble learning. Vision Research, 140, 144–156. https://doi.org/10.1016/j.visres.2017.08.003

    Article  PubMed  Google Scholar 

  • Chetverikov, A., Hansmann-Roth, S., Tanrikulu, O. D., & Kristjánsson, Á. (2019). Feature distribution learning (FDL): a new method to study visual ensembles with priming of attention shifts. In S. Pollman (Ed.), Spatial learning and attention guidance. Neuromethods. New York: Springer Nature.

    Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. https://doi.org/10.1037/0033-295X.96.3.433

    Article  PubMed  Google Scholar 

  • Eckstein, M. P. (1998). The lower visual search efficiency for conjunctions is due to noise and not serial attentional processing. Psychological Science, 9, 111–118. https://doi.org/10.1111/1467-9280.00020

    Article  Google Scholar 

  • Eckstein, M. P., Thomas, J. P., Palmer, J., & Shimozaki, S. S. (2000). A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics, 62, 425–451. https://doi.org/10.3758/BF03212096

    Article  PubMed  Google Scholar 

  • Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740–1750. https://doi.org/10.1177/0956797615597913

    Article  PubMed  Google Scholar 

  • Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception and Psychophysics, 67, 1252–1268.

    Article  PubMed  Google Scholar 

  • Geng, J. J., & Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current opinion in psychology, 29, 119–125

  • Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43(12), 1993.

    PubMed  Google Scholar 

  • Geng, J. J., Won, B. Y., & Carlisle, N. B. (2019). Distractor ignoring: Strategies, learning, and passive filtering. Current Directions in Psychological Science, 28(6), 600–606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goolsby, B. A., & Suzuki, S. (2001). Understanding priming of color-singleton search: Roles of attention at encoding and “retrieval.” Perception and Psychophysics, 63(6), 929–944.

    Article  PubMed  Google Scholar 

  • Grubert, A., & Eimer, M. (2013). Qualitative differences in the guidance of attention during single-color and multiple-color visual search: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1433.

  • Hansmann-Roth, S., Chetverikov, A., & Kristjánsson, A. (2019). Representing color and orientation ensembles: Can observers learn multiple feature distributions? Journal of Vision, 19(9), 2. https://doi.org/10.1167/19.9.2

    Article  PubMed  Google Scholar 

  • Hansmann-Roth, S., Kristjánsson, Á., Whitney, D., & Chetverikov, A. (2021). Dissociating implicit and explicit ensemble representations reveals the limits of visual perception and the richness of behavior. Scientific Reports, 11, 3899.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, and Psychophysics, 77(1), 128–149. https://doi.org/10.3758/s13414-014-0764-6

    Article  Google Scholar 

  • Ishihara, S. (2004). Ishihara’s tests for colour deficiency. Tokyo, Japan: Kanehara Trading Inc

  • Kim, B., & Basso, M. A. (2008). Saccade target selection in the superior colliculus: A signal detection theory approach. The Journal of Neuroscience, 28, 2991–3007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12), 712–719.

    Article  PubMed  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.

    Article  PubMed  Google Scholar 

  • Kristjánsson, Á., & Ásgeirsson, Á. G. (2019). Attentional priming: Recent insights and current controversies. Current Opinion in Psychology, 29, 71–75.

    Article  PubMed  Google Scholar 

  • Kristjánsson, Á., & Driver, J. (2005). Priming in visual search: Separating the effects of target repetition, distractor repetition and role-reversal. Vision Research, 48(10), 1217–1232.

    Article  Google Scholar 

  • Kristjánsson, Á., Sigurjónsdóttir, Ó., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, and Psychophysics, 72(5), 1229–1236.

    Article  Google Scholar 

  • Lamy, D. F., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48(1), 30–41. https://doi.org/10.1016/j.visres.2007.10.009

    Article  PubMed  Google Scholar 

  • Lawrence, M. A. (2016). Easy analysis and visualization of factorial experiments. R package version 4.4.

  • Ma, W. J. (2019). Bayesian decision models: A primer. Neuron, 104(1), 164–175.

    Article  PubMed  Google Scholar 

  • Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9, 1–13. https://doi.org/10.1167/9.11.8

    Article  PubMed  Google Scholar 

  • Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4–4.

    Article  PubMed  Google Scholar 

  • Maljkovic, V., & Nakayama, K. (1994). The priming of pop-out: I Role of Features. Memory and Cognition, 22, 657–672.

    Article  PubMed  Google Scholar 

  • Maljkovic, V., & Nakayama, K. E. N. (1996). Priming of pop-out: II. The role of position. Perception and Psychophysics, 58(7), 977–991.

    Article  PubMed  Google Scholar 

  • Martinez-Trujillo, J. C., & Treue, S. (2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14, 744–751. https://doi.org/10.1016/j.cub.2004.04.028

    Article  PubMed  Google Scholar 

  • Martini, P. (2010). System identification in priming of pop-out. Vision Research, 50(21), 2110–2115.

    Article  PubMed  Google Scholar 

  • Maule, J., & Franklin, A. (2015). Effects of ensemble complexity and perceptual similarity on rapid averaging of hue. Journal of Vision, 15(4), Article 6. https://doi.org/10.1167/15.4.6

    Article  Google Scholar 

  • Maule, J., & Franklin, A. (2016). Accurate rapid averaging of multihue ensembles is due to a limited capacity subsampling mechanism. Journal of the Optical Society of America a: Optics, Image Science, and Vision, 33, A22–A29. https://doi.org/10.1364/JOSAA.33.000A22

    Article  PubMed  Google Scholar 

  • Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29, 317–322. https://doi.org/10.1016/j.tins.2006.04.001

    Article  PubMed  Google Scholar 

  • Michael, E., de Gardelle, V., & Summerfield, C. (2014). Priming by the variability of visual information. Proceedings of the National Academy of Sciences, 111(21), 7873–7878.

    Article  Google Scholar 

  • Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64.

    Article  Google Scholar 

  • Navalpakkam, V., & Itti, L. (2007). Search goal tunes visual features optimally. Neuron, 53, 605–617. https://doi.org/10.1016/j.neuron.2007.01.018

    Article  PubMed  Google Scholar 

  • Palmer, J., Verghese, P., & Pavel, M. (2000). The psychophysics of visual search. Vision Research, 40(10–12), 1227–1268. https://doi.org/10.1016/S0042-6989(99)00244-8

    Article  PubMed  Google Scholar 

  • Peltier, C., & Becker, M. W. (2016). Decision processes in visual search as a function of target prevalence. Journal of Experimental Psychology: Human Perception and Performance, 42, 1466–1476. https://doi.org/10.1037/xhp0000248

    Article  PubMed  Google Scholar 

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.Rproject.org/.

  • Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61, 168–185. https://doi.org/10.1016/j.neuron.2009.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenholtz, R. (2001). Visual search for orientation among heterogeneous distractors: Experimental results and implications for signal-detection theory models of search. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 985–999. https://doi.org/10.1037/0096-1523.27.4.985

    Article  PubMed  Google Scholar 

  • Sanborn, A. N., & Beierholm, U. R. (2016). Fast and accurate learning when making discrete numerical estimates. PLoS computational biology, 12(4), e1004859

  • Sayim, B., Grubert, A., Herzog, M. H., & Krummenacher, J. (2010). Display probability modulates attentional capture by onset distractors. Journal of Vision, 10, 1–8. https://doi.org/10.1167/10.3.10

    Article  PubMed  Google Scholar 

  • Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62(10), 1904–1914.

    Article  PubMed  Google Scholar 

  • Sigurdardottir, H. M., Kristjánsson, Á., & Driver, J. (2007). Repetition streaks increase perceptual sensitivity in visual search of brief displays. Visual Cognition, 16(5), 643–658.

    Article  Google Scholar 

  • Tanrıkulu, Ö. D., Chetverikov, A., & Kristjánsson, Á. (2020). Encoding perceptual ensembles during visual search in peripheral vision. Journal of Vision, 20, 1–18.

    Article  Google Scholar 

  • Tanrıkulu, Ö. D., Chetverikov, A., & Kristjansson, A. (2021). Testing temporal integration of feature probability distributions using role-reversal effects in visual search. Vision Research, 188, 211–226.

    Article  PubMed  Google Scholar 

  • Thompson, D. R., & Milliken, B. (2012). Perceptual distinctiveness produces long-lasting priming of pop-out. Psychonomic bulletin & review, 19(2), 170–176

  • Töllner, T., Conci, M., & Müller, H. J. (2015). Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets. Human Brain Mapping, 36(3), 935–944.

    Article  PubMed  Google Scholar 

  • Tran, R. V., & E & Pashler, H. (2017). How effective is incidental learning of the shape of probability distributions? Royal Society Open Science, 4(8), 1–9.

    Article  Google Scholar 

  • Treue, S., & Trujillo, J. C. M. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(6736), 575–579.

    Article  PubMed  Google Scholar 

  • Turatto, M., Bonetti, F., Pascucci, D., & Chelazzi, L. (2018). Desensitizing the attention system to distraction while idling: A new latent learning phenomenon in the visual attention domain. Journal of Experimental Psychology: General, 147(12), 1827–1850. https://doi.org/10.1037/xge0000503

    Article  Google Scholar 

  • Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic bulletin & review, 19(5), 871–878

  • Verghese, P. (2001). Visual search and attention: A signal detection theory approach. Neuron, 31, 523–535. https://doi.org/10.1016/S0896-6273(01)00392-0

    Article  PubMed  Google Scholar 

  • Vickery, T. J., King, L., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5, 81–92. https://doi.org/10.1167/5.1.8

    Article  PubMed  Google Scholar 

  • Wang, D., Kristjánsson, Á., & Nakayama, K. (2005). Efficient visual search without topdown or bottom-up guidance. Perception and Psychophysics, 67(2), 239–253. https://doi.org/10.3758/BF03206488

    Article  PubMed  Google Scholar 

  • Wang, Y., Miller, J., & Liu, T. (2015). Suppression effects in feature-based attention. Journal of Vision, 15, 15. https://doi.org/10.1167/15.5.15

    Article  PubMed  PubMed Central  Google Scholar 

  • Witkowski, P., & Geng, J. J. (2019). Learned feature variance is encoded in the target template and drives visual search. Visual Cognition, 27(5), 487–501. https://doi.org/10.1080/13506285.2019.1645779

    Article  PubMed  PubMed Central  Google Scholar 

  • Witzel, C., & Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 13(7), 1

    Article  PubMed  Google Scholar 

  • Witzel, C., & Gegenfurtner, K. R. (2015). Categorical facilitation with equally discriminable colors. Journal of Vision, 15(8), 22–33.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238. https://doi.org/10.3758/BF03200774

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., & O’Connell, K. M. (1992). The role of categorization in visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 18(1), 34–49. https://doi.org/10.1037/0096-1523.18.1.34

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 495–501. https://doi.org/10.1038/nrn1411

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44, 1411–1426. https://doi.org/10.1016/j.visres.2003.11.024

    Article  PubMed  Google Scholar 

  • Woodman, G. F., Carlisle, N. B., & Reinhart, R. M. (2013). Where do we store the memory representations that guide attention?. Journal of vision, 13(3), 1–17

  • Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of Experimental Psychology: Human Perception and Performance, 44(7), 1128–1141

    PubMed  Google Scholar 

  • Won, B.-Y., & Geng, J. J. (2020). Passive exposure attenuates distraction during visual search. Journal of Experimental Psychology: General, 149(10), 1987–1995. https://doi.org/10.1037/xge0000760

    Article  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363.

    PubMed  Google Scholar 

  • Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095–2103. https://doi.org/10.1016/j.visres.2009.05.017

    Article  PubMed  PubMed Central  Google Scholar 

  • Yashar, A., & Lamy, D. (2010). Intertrial repetition affects perception: The role of focused attention. Journal of Vision, 10(14), 1–8

  • Yu, X., & Geng, J. J. (2019). The attentional template is shifted and asymmetrically sharpened by distractor context. Journal of Experimental Psychology: Human Perception and Performance, 45(3), 336.

    PubMed  Google Scholar 

Download references

Funding

SHR and AK were supported by Grant IRF #173947-052 from the Icelandic research fund, and by a grant from the Research Fund of the University of Iceland. JJG was supported by a grant from the NIH (R01 MH113855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Hansmann-Roth.

Ethics declarations

Conflict of interest

Our study was conducted in compliance with ethical standards. All participants gave informed consent to participate in the experiment, and there was no conflict of interest to declare. No animals were used in the study and all procedures performed involving human participants were approved by the ethics committee of the National Bioethics committee in Iceland (Vísindasiðanefnd, http://www.vsn.is) and performed in accordance with their requirements and guidelines and the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preprint of this manuscript has been recently published on PsyArXiv: Hansmann-Roth, S., Thorsteinsdóttir, S., Geng, J., & Kristjansson, A. Temporal integration of feature probability distributions in working memory. https://doi.org/10.31234/osf.io/2uy57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansmann-Roth, S., Þorsteinsdóttir, S., Geng, J.J. et al. Temporal integration of feature probability distributions. Psychological Research 86, 2030–2044 (2022). https://doi.org/10.1007/s00426-021-01621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-021-01621-3

Navigation