Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery

Abstract

Motor imagery has been used in training programs to improve the performance of motor skills. Handwriting movement may benefit from motor imagery training. To optimize the efficacy of this kind of training, it is important to identify the factors that facilitate the motor imagery process for handwriting movements. Several studies have shown that motor imagery is more easily achieved when there is maximum compatibility between the actual posture and the imagined movement. We, therefore, examined the effect of posture congruency on visual and kinesthetic motor imagery for handwriting movements. Adult participants had to write and imagine writing a sentence by focusing on the evocation of either the kinesthetic or visual consequences of the motion. Half the participants performed the motor imagery task in a congruent posture (sitting with a hand ready for writing), and half in an incongruent one (standing with arms crossed behind the back and fingers spread wide). The temporal similarity between actual and imagined movement times and the vividness of the motor imagery were evaluated. Results revealed that temporal similarity was stronger in the congruent posture condition than in the incongruent one. Furthermore, in the incongruent posture condition, participants reported greater difficulty forming a precise kinesthetic motor image of themselves writing than a visual image, whereas no difference was observed in the congruent posture condition. Taken together, our results show that postural information is taken into account during the mental simulation of handwriting movements. The implications of these findings for guiding the design of motor imagery training are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams, I. L., Smits-Engelsman, B., Lust, J. M., Wilson, P. H., & Steenbergen, B. (2017). Feasibility of motor imagery training for children with developmental coordination disorder—a pilot study. Frontiers in Psychology,8, 1271.

    PubMed  PubMed Central  Google Scholar 

  2. Alamargot, D., Chesnet, D., & Caporossi, G. (2012). Using eye and pen movements to study the writing process. In M. Fayol, D. Alamargot, & V. Berninger (Eds.), Translation of thought to written text while composing: Advancing theory, knowledge, research methods, tools, and applications (pp. 315–338). New York: Taylor & Francis.

    Google Scholar 

  3. Alamargot, D., & Morin, M.-F. (2015). Does handwriting on a tablet screen impact students’ graphomotor execution? A comparison between grades 2 and 9. Human Movement Science,44, 32–41.

    PubMed  Google Scholar 

  4. Assaiante, C., Barlaam, F., Cignetti, F., & Vaugoyeau, M. (2014). Body schema building during childhood and adolescence: A neurosensory approach. Clinical Neurophysiology,44(1), 3–12.

    PubMed  Google Scholar 

  5. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology,59, 617–645.

    PubMed  Google Scholar 

  6. Blakemore, S. J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal lobe. Experimental Brain Research,153(2), 239–245.

    PubMed  Google Scholar 

  7. Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia,48(3), 763–773.

    PubMed  Google Scholar 

  8. Bremner, A. J., Hill, E. L., Pratt, M., Rigato, S., & Spence, C. (2013). Bodily illusions in young children: Developmental change in visual and proprioceptive contributions to perceived hand position. PLoS ONE,8(1), e51887.

    PubMed  PubMed Central  Google Scholar 

  9. Chartrel, E., & Vinter, A. (2006). Rôle des informations visuelles dans la production de lettres cursives chez l’enfant et l’adulte. L’Année psychologique,106(01), 43–64.

    Google Scholar 

  10. Danna, J., & Velay, J.-L. (2015). Basic and supplementary sensory feedback in handwriting. Frontiers in Psychology,6(169), 1–11.

    Google Scholar 

  11. Decety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research,77(1–2), 45–52.

    PubMed  Google Scholar 

  12. Decety, J., Jeannerod, M., Durozard, D., & Baverel, G. (1993). Central activation of autonomic effectors during mental simulation of motor actions in man. The Journal of Physiology,461(1), 549–563.

    PubMed  PubMed Central  Google Scholar 

  13. Decety, J., Jeannerod, M., Germain, M., & Pastene, J. (1991). Vegetative response during imagined movement is proportional to mental effort. Behavioural Brain Research,42(1), 1–5.

    PubMed  Google Scholar 

  14. Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research,34(1–2), 35–42.

    PubMed  Google Scholar 

  15. Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain and Cognition,11(1), 87–97.

    PubMed  Google Scholar 

  16. de Lange, F. P., Helmich, R. C., & Toni, I. (2006). Posture influences motor imagery: An fMRI study. NeuroImage,33(2), 609–617.

    PubMed  Google Scholar 

  17. Erhardt, R. P., & Meade, V. (2005). Improving handwriting without teaching handwriting: The consultative clinical reasoning process. Australian Occupational Therapy Journal,52(3), 199–210.

    Google Scholar 

  18. Fadiga, L., & Craighero, L. (2004). Electrophysiology of action representation. Journal of Clinical Neurophysiology,21(3), 157–169.

    PubMed  Google Scholar 

  19. Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance—a meta-analysis. Journal of Sport Psychology,5(1), 25–57.

    Google Scholar 

  20. Féry, Y.-A. (2003). Differentiating visual and kinesthetic imagery in mental practice. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale,57(1), 1–10.

    PubMed  Google Scholar 

  21. Fourkas, A. D., Ionta, S., & Aglioti, S. M. (2006). Influence of imagined posture and imagery modality on corticospinal excitability. Behavioural Brain Research,168(2), 190–196.

    PubMed  Google Scholar 

  22. Gabbard, C., Caçola, P., & Bobbio, T. (2011). Examining age-related movement representations for sequential (fine-motor) finger movements. Brain and Cognition,77(3), 459–463.

    PubMed  Google Scholar 

  23. Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., et al. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex,10(11), 1093–1104.

    PubMed  Google Scholar 

  24. Ghez, C., & Sainburg, R. (1995). Proprioceptive control of interjoint coordination. Canadian Journal of Physiology and Pharmacology,73(2), 273–284.

    PubMed  Google Scholar 

  25. Grush, R. (2004). The emulation theory of representation: Motor control, imagery and perception. Behavioral and Brain Sciences,27, 377–396.

    PubMed  Google Scholar 

  26. Guilbert, J., Alamargot, D., & Morin, M. F. (2019). Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults. Human Movement Science,65, 30–41.

    Google Scholar 

  27. Guilbert, J., Jouen, F., & Molina, M. (2018). Motor imagery development and proprioceptive integration: Which sensory reweighting during childhood? Journal of Experimental Child Psychology,166, 621–634.

    PubMed  Google Scholar 

  28. Guilbert, J., Molina, M., & Jouen, F. (2016). Rôle des afférences proprioceptives dans le développement de l’imagerie motrice chez l’enfant. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale,70(4), 343.

    PubMed  Google Scholar 

  29. Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior,37(1), 10–20.

    PubMed  Google Scholar 

  30. Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2009). Brain activity during visual versus kinesthetic imagery: An fMRI study. Human Brain Mapping,30(7), 2157–2172.

    PubMed  Google Scholar 

  31. Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012). Understanding the timing of motor imagery: Recent findings and future directions. International Review of Sport and Exercise Psychology,5(1), 3–22.

    Google Scholar 

  32. Guillot, A., Lebon, F., & Collet, C. (2010). Electromyographic activity during motor imagery. In A. Guillot & C. Collet (Eds.), The neurophysiological foundations of mental and motor imagery (1st ed., pp. 83–93). Oxford: Oxford University Press.

    Google Scholar 

  33. Hanakawa, T. (2016). Organizing motor imageries. Neuroscience Research,104, 56–63.

    PubMed  Google Scholar 

  34. Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., et al. (2013). The neural network of motor imagery: An ALE meta-analysis. Neuroscience & Biobehavioral Reviews,37(5), 930–949.

    Google Scholar 

  35. Iachini, T. (2011). Mental imagery and embodied cognition: A multimodal approach. Journal of Mental Imagery,35(3–4), 1–66.

    Google Scholar 

  36. Imamizu, H., & Kawato, M. (2009). Brain mechanisms for predictive control by switching internal models: Implications for higher-order cognitive functions. Psychological Research Psychologische Forschung,73(4), 527–544.

    PubMed  Google Scholar 

  37. Ionta, S., Fourkas, A. D., Fiorio, M., & Aglioti, S. M. (2007). The influence of hands posture on mental rotation of hands and feet. Experimental Brain Research,183(1), 1–7.

    PubMed  Google Scholar 

  38. Jackson, P. L., Lafleur, M. F., Malouin, F., Richards, C., & Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation,82(8), 1133–1141.

    PubMed  Google Scholar 

  39. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences,17(02), 187–202.

    Google Scholar 

  40. Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia,33(11), 1419–1432.

    PubMed  Google Scholar 

  41. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage,14(1), S103–S109.

    PubMed  Google Scholar 

  42. Jeannerod, M. (2006). Motor cognition: What actions tell the self (Vol. 42). Oxford: Oxford University Press.

    Google Scholar 

  43. Jiang, D., Edwards, M. G., Mullins, P., & Callow, N. (2015). The neural substrates for the different modalities of movement imagery. Brain and Cognition,97, 22–31.

    PubMed  Google Scholar 

  44. Kilteni, K., Andersson, B. J., Houborg, C., & Ehrsson, H. H. (2018). Motor imagery involves predicting the sensory consequences of the imagined movement. Nature Communications,9(1), 1617.

    PubMed  PubMed Central  Google Scholar 

  45. Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: The influence of posture and perspective. Experimental Brain Research,194(2), 233–243.

    PubMed  Google Scholar 

  46. Malouin, F., Richards, C. L., & Durand, A. (2010). Normal aging and motor imagery vividness: Implications for mental practice training in rehabilitation. Archives of Physical Medicine and Rehabilitation,91(7), 1122–1127.

    PubMed  Google Scholar 

  47. Malouin, F., Richards, C. L., Durand, A., & Doyon, J. (2008). Clinical assessment of motor imagery after stroke. Neurorehabilitation and Neural Repair,22(4), 330–340.

    PubMed  Google Scholar 

  48. Malouin, F., Richards, C. L., Jackson, P. L., Lafleur, M. F., Durand, A., & Doyon, J. (2007). The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. Journal of Neurologic Physical Therapy,31(1), 20–29.

    PubMed  Google Scholar 

  49. Maravita, A., Spence, C., & Driver, J. (2003). Multisensory integration and the body schema: Close to hand and within reach. Current Biology,13(13), R531–R539.

    PubMed  Google Scholar 

  50. Meugnot, A., Agbangla, N. F., Almecija, Y., & Toussaint, L. (2015). Motor imagery practice may compensate for the slowdown of sensorimotor processes induced by short-term upper-limb immobilization. Psychological Research Psychologische Forschung,79(3), 489–499.

    PubMed  Google Scholar 

  51. Milton, J., Small, S. L., & Solodkin, A. (2008). Imaging motor imagery: Methodological issues related to expertise. Methods,45(4), 336–341.

    PubMed  PubMed Central  Google Scholar 

  52. Mizuguchi, N., Nakata, H., Uchida, Y., & Kanosue, K. (2012). Motor imagery and sport performance. The Journal of Physical Fitness and Sports Medicine,1(1), 103–111.

    Google Scholar 

  53. Mulder, T., Zijlstra, S., Zijlstra, W., & Hochstenbach, J. (2004). The role of motor imagery in learning a totally novel movement. Experimental Brain Research,154(2), 211–217.

    PubMed  Google Scholar 

  54. Munzert, J., & Lorey, B. (2013). Motor and visual imagery in sports. In S. Lacey & R. Lawson (Eds.), Multisensory imagery (pp. 319–341). New York: Springer.

    Google Scholar 

  55. Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews,60(2), 306–326.

    PubMed  Google Scholar 

  56. Naito, E., Kochiyama, T., Kitada, R., Nakamura, S., Matsumura, M., Yonekura, Y., et al. (2002). Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. The Journal of Neurosciences,22(9), 3683–3691.

    Google Scholar 

  57. Papaxanthis, C., Pozzo, T., Skoura, X., & Schieppati, M. (2002). Does order and timing in performance of imagined and actual movements affect the motor imagery process? The duration of walking and writing task. Behavioural Brain Research,134(1–2), 209–215.

    PubMed  Google Scholar 

  58. Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology: Human Perception and Performance,20(4), 709–730.

    PubMed  Google Scholar 

  59. Pezzulo, G. (2011). Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind & Language,26(1), 78–114.

    Google Scholar 

  60. Puyjarinet, F. (2019). Intérêts de la pratique de l’imagerie motrice dans la rééducation de l’écriture des enfants dysgraphiques. Approche Neuropsychologique des Apprentissages chez l’ Enfant (A.N.A.E.),31(159), 1–11.

    Google Scholar 

  61. Ridderinkhof, K. R., & Brass, M. (2015). How kinesthetic motor imagery works: A predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology-Paris,109(1–3), 53–63.

    Google Scholar 

  62. Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2015). Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Research,1597, 196–209.

    PubMed  Google Scholar 

  63. Saimpont, A., Malouin, F., Tousignant, B., & Jackson, P. L. (2012). The influence of body configuration on motor imagery of walking in younger and older adults. Neuroscience,222, 49–57.

    PubMed  Google Scholar 

  64. Sainburg, R. L., Poizner, H., & Ghez, C. (1993). Loss of proprioception produces deficits in interjoint coordination. Journal of Neurophysiology,70(5), 2136–2147.

    PubMed  Google Scholar 

  65. Sakamoto, M., Muraoka, T., Mizuguchi, N., & Kanosue, K. (2009). Combining observation and imagery of an action enhances human corticospinal excitability. Neuroscience Research,65(1), 23–27.

    PubMed  Google Scholar 

  66. Schuster, C., Hilfiker, R., Amft, O., Scheidhauer, A., Andrews, B., Butler, J., et al. (2011). Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Medicine,9(1), 75.

    PubMed  PubMed Central  Google Scholar 

  67. Shenton, J. T., Schwoebel, J., & Coslett, H. B. (2004). Mental motor imagery and the body schema: Evidence for proprioceptive dominance. Neuroscience Letters,370(1), 19–24.

    PubMed  Google Scholar 

  68. Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience,13(7), 910–919.

    PubMed  Google Scholar 

  69. Skoura, X., Vinter, A., & Papaxanthis, C. (2009). Mentally simulated motor actions in children. Developmental Neuropsychology,34(3), 356–367.

    PubMed  Google Scholar 

  70. Smyth, M. M., & Silvers, G. (1987). Functions of vision in the control of handwriting. Acta Psychologica,65(1), 47–64.

    Google Scholar 

  71. Stevens, J. A. (2005). Interference effects demonstrate distinct roles for visual and motor imagery during the mental representation of human action. Cognition,95(3), 329–350.

    PubMed  Google Scholar 

  72. Tamada, T. (1995). Effects of delayed visual feedback on handwriting. Japanese Psychological Research,37(2), 103–109.

    Google Scholar 

  73. Van Doorn, R. R. A., & Keuss, P. J. G. (1992). The role of vision in the temporal and spatial control of handwriting. Acta Psychologica,81(3), 26–286.

    Google Scholar 

  74. Vargas, C. D., Olivier, E., Craighero, L., Fadiga, L., Duhamel, J. R., & Sirigu, A. (2004). The influence of hand posture on corticospinal excitability during motor imagery: A transcranial magnetic stimulation study. Cerebral Cortex,14(1), 1200–1206.

    PubMed  Google Scholar 

  75. Toussaint, L., & Blandin, Y. (2010). On the role of imagery modalities on motor learning. Journal of Sports Sciences,28(5), 497–504.

    PubMed  Google Scholar 

  76. Williams, S. E., Guillot, A., Di Rienzo, F., & Cumming, J. (2015). Comparing self-report and mental chronometry measures of motor imagery ability. European Journal of Sport Science,15(8), 703–711.

    PubMed  Google Scholar 

  77. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology,11(18), R729–R732.

    PubMed  Google Scholar 

  78. Zhang, T., Liu, T., Li, F., Li, M., Liu, D., Zhang, R., et al. (2016). Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. NeuroImage,134, 475–485.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jessica Guilbert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were conducted in accordance with the ethical standards of the institutional and/or national review board, the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards, and France’s 1988 Huriet Act on the bioethical protection of persons involved in human experimentations.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guilbert, J., Fernandez, J., Molina, M. et al. Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery. Psychological Research (2020). https://doi.org/10.1007/s00426-020-01399-w

Download citation