Skip to main content

Heterogenous abstract concepts: is “ponder” different from “dissolve”?

Abstract

Abstract words have usually been treated as a homogenous group, with limited investigation of the influence of different underlying representational systems for these words. In the present study we examined lexical–semantic processing of abstract verbs, separating them into mental state, emotional state and nonembodied state types. We used a syntactic classification task and a memory task to investigate behavioural differences amongst the abstract verb types. Semantic richness effects of each of the verbs' associates were then investigated to determine the relationship of linguistic associations to semantic processing response times for abstract verbs. We found a modest effect of abstract verb type, with mental state abstract verbs processed more quickly than nonembodied abstract verbs in the syntactic classification task; however, this effect was task dependent. We also found that memory was less accurate for the mental state abstract verbs. The semantic richness analysis of abstract verb associates revealed (1) that the concreteness of an abstract verb’s associates has a positive relationship to the verb’s response time and (2) a negative relationship between response time and age of acquisition for associates of nonembodied verbs. The results provide support for the proposal that abstract concepts engage complex representations in modal and linguistic systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    The response time data from Experiments 1–3 exhibited a positive skew. Supplementary analyses using a log-transformed response time for all mixed effect models reported here found that all significant fixed effects remained when using the log-transformed response time, with the exception of the significant difference between nonembodied abstract verbs and embodied verbs reported for Experiment 2. This effect was also not present in Experiment 1, which likely indicates this is not a strong or reliable effect as discussed in the discussion section.

  2. 2.

    Mixed effect models were also conducted using the response data for the Experiment 2 encoding task and the SCT from Experiment 3. Those results are consistent with the AoA and concreteness effects reported here. The frequency of associates effect from Experiment 1 was not replicated in the data from Experiment 2 or 3.

References

  1. Altarriba, J., & Bauer, L. M. (2004). The distinctiveness of emotion concepts: A comparison between emotion, abstract and concrete words. The American Journal of Psychology, 117(3), 389–410.

    PubMed  Google Scholar 

  2. Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16(18), 1818–1823. https://doi.org/10.1016/j.cub.2006.07.060.

    PubMed  Article  Google Scholar 

  3. Barsalou, L. W. (1987). The instability of graded structure in concepts. In U. Neisser (Ed.), Concepts and conceptual development: Ecological and intellectual factors in categorization (pp. 101–140). New York: Cambridge University Press.

    Google Scholar 

  4. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639.

    PubMed  Article  Google Scholar 

  5. Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic Bulletin and Review, 23(4), 1122–1142. https://doi.org/10.3758/s13423-016-1028-3.

    PubMed  Article  Google Scholar 

  6. Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. In M. De Vega, A. M. Glenberg, & A. C. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283). Oxford: Oxford University Press.

    Google Scholar 

  7. Barsalou, L. W., & Weimer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory (pp. 129–163). New York: Cambridge University Press.

    Google Scholar 

  8. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models Usinglme4. Journal of Statistical Software. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  9. Bennett, S. D., Burnett, A. N., Siakaluk, P. D., & Pexman, P. M. (2011). Imageability and body–object interaction ratings for 599 multisyllabic nouns. Behavior Research Methods, 43(4), 1100–1109. https://doi.org/10.3758/s13428-011-0117-5.

    PubMed  Article  Google Scholar 

  10. Bird, H., Franklin, S., & Howard, D. (2001). Age of acquisition and imageability ratings for a large set of words, including verbs and function words. Behavior Research Methods, 33(1), 73–70.

    Google Scholar 

  11. Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–153. https://doi.org/10.1016/j.plrev.2018.12.001.

    PubMed  Article  Google Scholar 

  12. Borghi, A. M., & Binkofski, F. (2014). Words as social tools: An embodied view on abstract concepts. Berlin and New York: Springer.

    Google Scholar 

  13. Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263–292. https://doi.org/10.1037/bul0000089.

    PubMed  Article  Google Scholar 

  14. Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bolte, J., & Bohl, A. (2011). The word frequency effect. Experimental Psychology, 58, 412–424.

    PubMed  Google Scholar 

  15. Brysbaert, M., Mandera, P., McCormick, S. F., & Keuleers, E. (2019). Word prevalence norms for 62,000 English lemmas. Behavior Research Methods, 51(2), 467–479. https://doi.org/10.3758/s13428-018-1077-9.

    PubMed  Article  Google Scholar 

  16. Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990. https://doi.org/10.3758/BRM.41.4.977.

    PubMed  Article  Google Scholar 

  17. Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech information to the SUBTLEX-US word frequencies. Behavior Research Methods, 44(4), 991–997. https://doi.org/10.3758/s13428-012-0190-4.

    PubMed  Article  Google Scholar 

  18. Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904–911.

    PubMed  Google Scholar 

  19. Buchanan, L., Westbury, C., & Burgess, C. (2001). Characterizing semantic space: Neighborhood effects in word recognition. Psychological Bulletin, 8(3), 531–544.

    Google Scholar 

  20. De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small World of Words” English word association norms for over 12,000 cue words. Behavior Research Methods, 51(3), 987–1006. https://doi.org/10.3758/s13428-018-1115-7.

    PubMed  Article  Google Scholar 

  21. Desai, R. H., Binder, J. R., Conant, L. L., & Seidenberg, M. S. (2010). Activation of sensory-motor areas in sentence comprehension. Cerebral Cortex, 20(2), 468–478. https://doi.org/10.1093/cercor/bhp115.

    PubMed  Article  Google Scholar 

  22. Dove, G. (2016). Three symbol ungrounding problems: Abstract concepts and the future of embodied cognition. Psychonomic Bulletin and Review, 23(4), 1109–1121. https://doi.org/10.3758/s13423-015-0825-4.

    PubMed  Article  Google Scholar 

  23. Dove, G., Barca, L., Tummolini, L., & Borghi, A. M. (2020). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. PsyArXiv. https://doi.org/10.31234/osf.io/j6xhe

  24. Dunabeitia, J. A., Aviles, A., & Carreiras, M. (2008). NoA's Ark: influence of the number of associates in visual word recognition. Psychonomic Bulletin and Review, 15(6), 1072–1077. https://doi.org/10.3758/PBR.15.6.1072.

    PubMed  Article  Google Scholar 

  25. Gennari, S., & Poeppel, D. (2003). Processing correlates of lexical semantic complexity. Cognition, 89(1), 27–41. https://doi.org/10.1016/S0010-0277(03)00069-6.

    Article  Google Scholar 

  26. Glenberg, A. M. (2015). Few believe the world is flat: How embodiment is changing the scientific understanding of cognition. Canadian Journal of Experimental Psychology, 69(2), 165–171.

    PubMed  Google Scholar 

  27. Harpaintner, M., Trumpp, N. M., & Kiefer, M. (2020). Time course of brain activity during the processing of motor- and vision-related abstract concepts: Flexibility and task-dependency. Psychological Research. https://doi.org/10.1007/s00426-020-01374-5.

    PubMed  Article  Google Scholar 

  28. Harpaintner, M., Trumpp, N. M., & Kiefer, M. (2018). The semantic content of abstract concepts: A property listing study of 296 abstract words. Front Psychol, 9, 1748. https://doi.org/10.3389/fpsyg.2018.01748.

    PubMed  PubMed Central  Article  Google Scholar 

  29. Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–307.

    PubMed  Google Scholar 

  30. Hoffman, P., Lambon Ralph, M. A., & Rogers, T. T. (2013). Semantic diversity: A measure of semantic ambiguity based on variability in the contextual usage of words. Behavior Research Methods, 45(3), 718–730. https://doi.org/10.3758/s13428-012-0278-x.

    PubMed  Article  Google Scholar 

  31. James, C. T. (1975). The role of semantic information in lexical decisions. Journal of Experimental Psychology: Human Perception and Performance, 1(2), 130–136.

    Google Scholar 

  32. Kemmerer, D., Castillo, J. G., Talavage, T., Patterson, S., & Wiley, C. (2008). Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain and Language, 107(1), 16–43. https://doi.org/10.1016/j.bandl.2007.09.003.

    PubMed  Article  Google Scholar 

  33. Kounios, J., & Holcomb, P. J. (1994). Concreteness effects in semantic processing: ERP evidence supporting dual-coding theory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(4), 804–823.

    PubMed  Google Scholar 

  34. Kousta, S. T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: why emotion matters. Journal of Experimental Psychology: General, 140(1), 14–34. https://doi.org/10.1037/a0021446.

    Article  Google Scholar 

  35. Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44(4), 978–990. https://doi.org/10.3758/s13428-012-0210-4.

    PubMed  Article  Google Scholar 

  36. Kuznetsova, A., Brockhoof, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13.

    Article  Google Scholar 

  37. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The Embodied mind and its challenge to western thought. New York: Basic Books.

    Google Scholar 

  38. Leshinskaya, A., & Caramazza, A. (2016). For a cognitive neuroscience of concepts: Moving beyond the grounding issue. Psychonomic Bulletin and Review, 23(4), 991–1001. https://doi.org/10.3758/s13423-015-0870-z.

    PubMed  Article  Google Scholar 

  39. Locker, L., Simpson, G. B., & Yates, M. (2003). Semantic neighborhood effects on the recognition of ambiguous words. Memory and Cognition, 31(4), 505–515.

    PubMed  Google Scholar 

  40. Mahon, B. Z. (2015). What is embodied about cognition? Language Cognition and Neuroscience, 30(4), 420–429. https://doi.org/10.1080/23273798.2014.987791.

    Article  Google Scholar 

  41. Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology Paris, 102(1–3), 59–70. https://doi.org/10.1016/j.jphysparis.2008.03.004.

    Article  Google Scholar 

  42. McKoon, G., & Macfarland, T. (2002). Event templates in the lexical representations of verbs. Cognitive Psychology, 45, 1–44.

    PubMed  Google Scholar 

  43. Meteyard, L., & Davies, R. A. I. (2020). Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language. https://doi.org/10.1016/j.jml.2020.104092.

    Article  Google Scholar 

  44. Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: a review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788–804. https://doi.org/10.1016/j.cortex.2010.11.002.

    PubMed  Article  Google Scholar 

  45. Perea, M., Rosa, E., & Gomez, C. (2002). Is the go/no-go lexical decision task an alternative to the yes/no lexical decision task? Memory and Cognition, 30(1), 34–45.

    PubMed  Google Scholar 

  46. Pexman, P. M. (2012). Meaning-based influences on visual word recognition. In J. S. Adelman (Ed.), Visual word recognition meaning and context, individuals, and development (2nd ed., pp. 24–43). Hove: Psychology Press.

    Google Scholar 

  47. Pexman, P. M., Hargreaves, I. S., Edwards, J. D., Henry, L. C., & Goodyear, B. G. (2007). Neural correlates of concreteness in semantic categorization. Journal of Cognitive Neuroscience, 19(8), 1407–1419.

    PubMed  Google Scholar 

  48. Pylyshyn, Z. (1980). Computation and cognition: Issues in the foundations of cognitive science. The Behavioral and Brain Sciences, 3, 111–169.

    Google Scholar 

  49. R Core Team. (2013). R: A language and environment for statistical computing (Version 3.6.1). Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/

  50. Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract concepts. Front Hum Neurosci, 6, 315. https://doi.org/10.3389/fnhum.2012.00315.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Shaoul, C., & Westbury, C. (2010). Exploring lexical co-occurrence space using HiDEx. Behavior Research Methods, 42(2), 393–413. https://doi.org/10.3758/BRM.42.2.393.

    PubMed  Article  Google Scholar 

  52. Siakaluk, P. D., Newcombe, P. I., Duffels, B., Li, E., Sidhu, D. M., Yap, M. J., et al. (2016). Effects of emotional experience in lexical decision. Frontiers in Psychology, 7, 1157. https://doi.org/10.3389/fpsyg.2016.01157.

    PubMed  PubMed Central  Article  Google Scholar 

  53. Sidhu, D. M., Heard, A., & Pexman, P. M. (2016). Is more always better for verbs? Semantic richness effects and verb meaning. Frontiers in Psychology, 7, 798. https://doi.org/10.3389/fpsyg.2016.00798.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Sidhu, D. M., Kwan, R., Pexman, P. M., & Siakaluk, P. D. (2014). Effects of relative embodiment in lexical and semantic processing of verbs. Acta Psychologica (Amst), 149, 32–39. https://doi.org/10.1016/j.actpsy.2014.02.009.

    Article  Google Scholar 

  55. Sidhu, D. M., & Pexman, P. M. (2016). Is moving more memorable than proving? Effects of embodiment and imagined enactment on verb memory. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2016.01010.

    PubMed  PubMed Central  Article  Google Scholar 

  56. Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M.S. (2019). afex: Analysis of factorial experiments. R package version 0.25–1. https://CRAN.R-project.org/package=afex

  57. Tillotson, S. M., Siakaluk, P. D., & Pexman, P. M. (2008). Body-object interaction ratings for 1,618 monosyllabic nouns. Behavior Research Methods, 40(4), 1075–1078. https://doi.org/10.3758/BRM.40.4.1075.

    PubMed  Article  Google Scholar 

  58. Troche, J., Crutch, S., & Reilly, J. (2014). Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Front Psychol, 5, 360. https://doi.org/10.3389/fpsyg.2014.00360.

    PubMed  PubMed Central  Article  Google Scholar 

  59. Vargas, R., & Just, M. A. (2019). Neural representations of abstract concepts: Identifying underlying neurosemantic dimensions. Cerebral Cortex. https://doi.org/10.1093/cercor/bhz229.

    Article  Google Scholar 

  60. Vigliocco, G., Kousta, S. T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., et al. (2014). The neural representation of abstract words: the role of emotion. Cerebral Cortex, 24(7), 1767–1777. https://doi.org/10.1093/cercor/bht025.

    PubMed  Article  Google Scholar 

  61. Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403–430. https://doi.org/10.1017/langcog.2019.23.

    Article  Google Scholar 

  62. Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 45(4), 1191–1207. https://doi.org/10.3758/s13428-012-0314-x.

    PubMed  Article  Google Scholar 

  63. Wiemer-Hastings, K., & Xu, X. (2005). Content differences for abstract and concrete concepts. Cognitive Science, 29(1), 719–736. https://doi.org/10.1207/s155116709cog0000_33.

    Article  Google Scholar 

  64. Winter, B. (2020). Statistics for linguists: An introduction using R. New York, NY: Routledge.

    Google Scholar 

  65. Zdrazilova, L., & Pexman, P. M. (2013). Grasping the invisible: semantic processing of abstract words. Psychonomic Bulletin and Review, 20(6), 1312–1318. https://doi.org/10.3758/s13423-013-0452-x.

    PubMed  Article  Google Scholar 

  66. Zdrazilova, L., Sidhu, D. M., & Pexman, P. M. (2018). Communicating abstract meaning: concepts revealed in words and gestures. Philosophical Transactions of The Royal Society B. https://doi.org/10.1098/rstb.2017.0138.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), in the form of a Canada Graduate Scholarship – Masters to EJM and a Discovery Grant to PMP.

Funding

This study was funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN/03860-2018).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emiko J. Muraki.

Ethics declarations

Conflict of interest

Emiko J. Muraki declares that she has no conflict of interest. David M. Sidhu declares that he has no conflict of interest. Penny M. Pexman declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Conjoint Faculties Research Ethics Board, REB14-1662) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Table

Table 11 Verb stimuli

11.

Appendix B

See Table

Table 12 Noun stimuli

12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muraki, E.J., Sidhu, D.M. & Pexman, P.M. Heterogenous abstract concepts: is “ponder” different from “dissolve”?. Psychological Research (2020). https://doi.org/10.1007/s00426-020-01398-x

Download citation