Skip to main content
Log in

Dissociative associative-memory deficit as a function of primacy and recency effects

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Studies designed to explore memory for single items versus paired items (i.e., associative memory) in young adults show inconsistent results. Some studies report a decrease in associative recognition and others report mild-to-moderate or even a null effect. The studies often do not take into account stimuli serial position (SSP) when analyzing the locus of associative accuracy. Studies testing SSP often target memory for items, while studies targeting associative memory decline as a function of SSP are lacking. The objective of the current study is to test the separate and joint effect of SSP (experiments 1 + 2) and presentation duration (experiment 2) on memory recognition for items versus associations. We hypothesized that greater associative decline (compared to the expected decline in memory for items with similar serial location) will be observed for the material located at the end of a learning list than the material located at the beginning of a learning list. The results of the two experiments converged and confirmed our hypotheses; the greatest associative deficit was observed for associative material located at the end of the learning list (experiments 1 + 2) and for material presented for short durations (experiment 2). The interaction between SSP and presentation duration did not reach significance; however, a direct estimation of the cumulative deficit of SSP and presentation duration confirmed our hypothesis regarding greater associative deficit for recently presented items for short durations. These results highlight the importance of the joint and separate, effect of SSP and presentation duration to the study of associative memory decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behavioral and Brain Sciences, 22(03), 425–489.‏.

    PubMed  Google Scholar 

  • Aggleton, J. P., & Shaw, C. (1996). Amnesia and recognition memory: A re-analysis of psychometric data. Neuropsychologia, 34(1), 51–62.

    PubMed  Google Scholar 

  • Baddeley, A. (1992). Working memory. Science, 255(5044), 556.

    PubMed  Google Scholar 

  • Brodie, D. A., & Murdock, B. B. (1977). Effect of presentation time on nominal and functional serial-position curves of free recall. Journal of Verbal Learning and Verbal Behavior, 16(2), 185–200.

    Google Scholar 

  • Brubaker, M. S., & Naveh-Benjamin, M. (2014). The effects of presentation rate and retention interval on memory for items and associations in younger adults: A simulation of older adults’ associative memory deficit. Aging, Neuropsychology, and Cognition, 21(1), 1–26.

    Google Scholar 

  • Capitani, E., Della Sala, S., Logie, R. H., & Spinnler, H. (1992). Recency, primacy, and memory: Reappraising and standardising the serial position curve. Cortex, 28(3), 315–342.

    PubMed  Google Scholar 

  • Corballis, M. C. (1967). Serial order in recognition and recall. Journal of Experimental Psychology, 74(1), 99.

    PubMed  Google Scholar 

  • Craik, F. I., & Rabinowitz, J. C. (1985). The effects of presentation rate and encoding task on age-related memory deficits. Journal of Gerontology, 40(3), 309–315.

    PubMed  Google Scholar 

  • Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences, 100(4), 2157–2162.

    Google Scholar 

  • Davachi, L., & Wagner, A. D. (2002). Hippocampal contributions to episodic encoding: insights from relational and item-based learning. Journal of Neurophysiology, 88(2), 982–990.

    PubMed  Google Scholar 

  • Diana, R. A., Yonelinas, A. P., & Ranganath, C. (2007). Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends in cognitive sciences, 11(9), 379–386.

    PubMed  Google Scholar 

  • Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience & Biobehavioral Reviews, 36(7), 1597–1608.

    Google Scholar 

  • Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of verbal learning and verbal behavior, 5(4), 351–360.

    Google Scholar 

  • Greene, R. L. (1986). Sources of recency effects in free recall. Psychological Bulletin, 99(2), 221–228.

    Google Scholar 

  • Guez, J., Cohen, J., Naveh-Benjamin, M., Shiber, A., Yankovsky, Y., Saar, R., & Shalev, H. (2013). Associative memory impairment in acute stress disorder: Characteristics and time course. Psychiatry Research, 209(3), 479–484.

    PubMed  Google Scholar 

  • Guez, J., & Lev, D. (2016). A picture is worth a thousand words? Not when it comes to associative memory of older adults. Psychology and Aging, 31(1), 37–41.

    PubMed  Google Scholar 

  • Guez, J., & Naveh-Benjamin, M. (2015). Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit. Memory, 24, 1–17.

    Google Scholar 

  • Guez, J., Naveh-Benjamin, M., Yankovsky, Y., Cohen, J., Shiber, A., & Shalev, H. (2011). Traumatic stress is linked to a deficit in associative episodic memory. Journal of traumatic stress, 24(3), 260–267.

    PubMed  Google Scholar 

  • Henke, K., Weber, B., Kneifel, S., Wieser, H. G., & Buck, A. (1999). Human hippocampus associates information in memory. Proceedings of the National Academy of Sciences, 96(10), 5884–5889.

    Google Scholar 

  • Hirshman, E., & Hostetter, M. (2000). Using ROC curves to test models of recognition memory: The relationship between presentation duration and slope. Memory & Cognition, 28, 161–166.

    Google Scholar 

  • Hockey, R. (1973). Rate of presentation in running memory and direct manipulation of input-processing strategies. The Quarterly Journal of Experimental Psychology, 25(1), 104–111.‏.

    Google Scholar 

  • Isaac, C. L., & Mayes, A. R. (1999a). Rate of forgetting in amnesia: I. Recall and recognition of prose. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 942.

    PubMed  Google Scholar 

  • Isaac, C. L., & Mayes, A. R. (1999b). Rate of forgetting in amnesia: II. Recall and recognition of word lists at different levels of organization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 963.

    PubMed  Google Scholar 

  • Laughery, K. R., & Pinkus, A. L. (1966). Short-term memory: Effects of acoustic similarity, presentation rate and presentation mode. Psychonomic Science, 6(6), 285–286.

    Google Scholar 

  • Leding, J. K., & Lampinen, J. M. (2009). Memory conjunction errors: The effects of presentation duration and study repetition. Memory, 17(5), 597–607.‏.

    PubMed  Google Scholar 

  • Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M., & Roberts, N. (2002). Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus, 12(3), 325–340.

    PubMed  Google Scholar 

  • McDermott, K. B., & Watson, J. M. (2001). The rise and fall of false recall: The impact of presentation duration. Journal of Memory and Language, 45(1), 160–176.

    Google Scholar 

  • McElree, B. (2006). Accessing recent events. Psychology of Learning and Motivation, 46, 155–200.

    Google Scholar 

  • Murdock, B. B. Jr. (1962). The serial position effect of free recall. Journal of Experimental Psychology, 64(5), 482.

    Google Scholar 

  • Naveh-Benjamin, M., Guez, J., Kilb, A., & Reedy, S. (2004). The associative memory deficit of older adults: Further support using face-name associations. Psychology and Aging, 19(3), 541.

    PubMed  Google Scholar 

  • Naveh-Benjamin, M., Guez, J., & Marom, M. (2003). The effects of divided attention at encoding on item and associative memory. Memory & Cognition, 31(7), 1021–1035.

    Google Scholar 

  • Naveh-Benjamin, M., Guez, J., & Shulman, S. (2004). Older adults’ associative deficit in episodic memory: Assessing the role of decline in attentional resources. Psychonomic Bulletin & Review, 11(6), 1067–1073.

    Google Scholar 

  • Naveh-Benjamin, M., Hussain, Z., Guez, J., & Bar-On, M. (2003). Adult age differences in episodic memory: further support for an associative-deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(5), 826.

    PubMed  Google Scholar 

  • Naveh-Benjamin, M., & Kilb, A. (2012). How the measurement of memory processes can affect memory performance: The case of remember/know judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 194–203.

    PubMed  Google Scholar 

  • Neath, I. (1993). Distinctiveness and serial position effects in recognition. Memory & cognition, 21(5), 689–698.

    Google Scholar 

  • Nee, D. E., & Jonides, J. (2008). Neural correlates of access to short-term memory. Proceedings of the National Academy of Sciences, 105(37), 14228–14233.

    Google Scholar 

  • Nega, C. (2005). Perceptual effects and recollective experience in face recognition. Experimental Psychology, 52, 224 – 231. https://doi.org/10.1027/1618-3169.52.3.224.

    Article  PubMed  Google Scholar 

  • Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23, 104–118. https://doi.org/10.1037/0882-7974.23.1.104.

    Article  PubMed  Google Scholar 

  • Öztekin, I., Davachi, L., & McElree, B. (2010). Are representations in working memory distinct from representations in long-term memory? Neural evidence in support of a single store. Psychological Science, 21, 1123–1133.

    PubMed  PubMed Central  Google Scholar 

  • Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42(1), 2–13.

    PubMed  Google Scholar 

  • Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., & Acker, J. D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.‏.

    PubMed  Google Scholar 

  • Rubinsten, O., Anaki, D., Henik, A., Drori, S., & Faran, Y. (2005). Free association norms in the Hebrew language. In A. Henik, O. Rubinsten, & D. Anaki (Eds.) Word norms in hebrew, (pp. 17–34) Beersheba: Ben-Gurion University of the Negev.

    Google Scholar 

  • Rundus, D. (1971). Analysis of rehearsal processes in free recall. Journal of experimental psychology, 89(1), 63.

    Google Scholar 

  • Saar-Ashkenazy, R., Cohen, J. E., Guez, J., Gasho, C., Shelef, I., Friedman, A., & Shalev, H. (2014). Reduced corpus-callosum volume in posttraumatic stress disorder highlights the importance of interhemispheric connectivity for associative memory. Journal of traumatic stress, 27(1), 18–26.

    PubMed  Google Scholar 

  • Saar-Ashkenazy, R., Veksler, R., Guez, J., Jacob, Y., Shelef, I., Shalev, H., & Cohen, J. E. (2016). Breakdown of inter-hemispheric connectivity is associated with posttraumatic symptomatology and memory impairment. PLOS one, 11(2), e0144766.

    PubMed  PubMed Central  Google Scholar 

  • Sadeh, T., Ozubko, J. D., Winocur, G., & Moscovitch, M. (2016). Forgetting patterns differentiate between two forms of memory representation. Psychological Science, 27(6), 810–820.

    PubMed  Google Scholar 

  • Schon, K., Hasselmo, M. E., LoPresti, M. L., Tricarico, M. D., & Stern, C. E. (2004). Persistence of parahippocampal representation in the absence of stimulus input enhances long-term encoding: A functional magnetic resonance imaging study of subsequent memory after a delayed match-to-sample task. The Journal of Neuroscience, 24(49), 11088–11097.‏.

    PubMed  PubMed Central  Google Scholar 

  • Sperling, R., Chua, E., Cocchiarella, A., Rand-Giovannetti, E., Poldrack, R., Schacter, D. L., & Albert, M. (2003). Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage, 20(2), 1400–1410.

    PubMed  PubMed Central  Google Scholar 

  • Talmi, D., Grady, C. L., Goshen-Gottstein, Y., & Moscovitch, M. (2005). Neuroimaging the serial position curve a test of single-store versus dual-store models. Psychological Science, 16(9), 716–723.

    PubMed  Google Scholar 

  • Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277(5324), 376–380.

    PubMed  Google Scholar 

  • Waugh, N. C. (1967). Presentation time and free recall. Journal of Experimental Psychology, 73(1), 39.

    PubMed  Google Scholar 

  • Weirich, S., Hoffmann, F., Meißner, L., Heinz, A., & Bengner, T. (2011). Sex influence on face recognition memory moderated by presentation duration and reencoding. Neuropsychology, 25(6), 806.

    PubMed  Google Scholar 

  • Wingenfeld, K., & Wolf, O. T. (2014). Stress, memory, and the hippocampus. Frontiers in Neurology and Neuroscience, 34, 109–120.

    Google Scholar 

  • Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of memory and language, 46(3), 441–517.

    Google Scholar 

  • Yonelinas, A. P., Hopfinger, J. B., Buonocore, M. H., Kroll, N. E. A., & Baynes, K. (2001). Hippocampal, parahippocampal and occipitaltemporal contributions to associative and item recognition memory: An fMRI study. Neuroreport, 12(2), 359–363.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Achva Academic College grant to the first author. We are grateful to Eldana Perlman, Katya Rabinowitch, Ruslan Bernstein and Eldad Keha for their assistance in data collection and analysis.

Funding

The study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Guez.

Ethics declarations

Conflict of interest

Dr. Guez declares no conflict of interest. Dr. Saar-Ashkenazi declares no conflict of interest. Mrs. Tiferet-Dweck declares no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guez, J., Saar-Ashkenazy, R. & Tiferet-Dweck, C. Dissociative associative-memory deficit as a function of primacy and recency effects. Psychological Research 84, 1545–1554 (2020). https://doi.org/10.1007/s00426-019-01167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-019-01167-5

Navigation