The eyes do not have it after all? Attention is not automatically biased towards faces and eyes

Abstract

It is commonly accepted that attention is spontaneously biased towards faces and eyes. However, the role of stimulus features and task settings in this finding has not yet been systematically investigated. Here, we tested if faces and facial features bias attention spontaneously when stimulus factors, task properties, response conditions, and eye movements are controlled. In three experiments, participants viewed face, house, and control scrambled face–house images in an upright and inverted orientation. The task was to discriminate a target that appeared with equal probability at the previous location of the face, house, or the control image. In all experiments, our data indicated no spontaneous biasing of attention for targets occurring at the previous location of the face. Experiment 3, which measured oculomotor biasing, suggested a reliable but infrequent saccadic bias towards the eye region of upright faces. Importantly, these results did not reflect our specific laboratory settings, as in Experiment 4, we present a full replication of a classic finding in the literature demonstrating reliable social attention bias. Together, these data suggest that attentional biasing for social information is task and context mediated, and less robust than originally thought.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    We thank Markus Bindemann for providing us with the original stimuli.

  2. 2.

    Twenty-eight additional naïve participants were asked to rate images of various faces and houses using a Likert scale ranging from 1- Very Unattractive to 6- Very Attractive. The Face and House images that were used here received equivalent attractiveness ratings (Face M = 2.93, SD = 0.77; House M = 2.96, SD = 0.96), which did not differ statistically, t(27) = 0.17, p = 0.87, dz = 0.03.

  3. 3.

    Confirming no speed-accuracy tradeoffs, an additional ANOVA examining mean accuracy rates with the same factors confirmed higher overall accuracy for short relative to long cue-target intervals [Cue-target interval, F(3,87)=9.23, p < 0.001, \(\eta _{{\text{p}}}^{2}\) = 0.24; 250 ms vs. 560 ms and 1000 ms, ts > 3.36, ps < 0.01, dzs > 0.61; 360 ms vs. 1000 ms, t(29)=2.78, p = 0.036, dz = 0.51; all other ps > 0.07, dzs < 0.44] and overall lowest accuracy for targets appearing at the location of the neutral cues [Target position, F(5,145)=29.74, p < 0.001, \(\eta _{{\text{p}}}^{2}\) = 0.51; upper and lower neutral vs. all, ts > 5.48, ps < 0.001, dzs > 1.00; all other ps > 0.56, dzs < 0.33]. A significant interaction between Cue orientation and Face position, F(1,29)=4.46, p = 0.043, \(\eta _{{\text{p}}}^{2}\) = 0.13, indicated lower overall accuracy when inverted faces were presented in the right visual field, t(29)=3.29, p = 0.006, dz = 0.60; other p = 0.76, dz = 0.06. No other effects involving Face position and Target position were significant, Fs < 2.80, ps > 0.11, \(\eta _{{\text{p}}}^{2}\) < 0.08.

  4. 4.

    Analyses of response accuracy once again indicated no speed-accuracy trade-offs. The ANOVA returned a marginal main effect of Cue-target interval, F(3,87)=2.67, p = 0.052, \(\eta _{{\text{p}}}^{2}\) = 0.08, with higher accuracy for targets appearing at short relative to long cue-target intervals [250 ms vs. 1000 ms, t(29)=2.83, p = 0.048, dz = 0.52; all other ps > 0.34, dzs < 0.35]. A main effect of Target position, F(5,145)=45.18, p < 0.001, \(\eta _{{\text{p}}}^{2}\) = 0.61, once again indicated lower accuracy for targets at the previous location of both neutral cues [upper and lower neutral vs. all, ts > 5.90, ps < 0.001, dzs > 1.08]. Lower accuracy was also found for targets occurring at the previous location of the mouth vs. eye cues, t(29) = 3.11, p = 0.028, dz = 0.57; all other ps > 0.10, dzs < 0.46. No other effects or interactions were reliable, all Fs < 1.63, ps > 0.18, \(\eta _{{\text{p}}}^{2}\) < 0.05.

  5. 5.

    No speed-accuracy trade-off was evident. The same ANOVA conducted on accuracy revealed a main effect of Target position, F(5,145)=15.74, p < 0.001, \(\eta _{{\text{p}}}^{2}\) = 0.35, with lower accuracy for targets appearing in the previous location of the upper and lower neutral cues vs. all others [ts > 3.60, ps < 0.008, dzs > 0.66; all other ps > 0.99, dzs < 0.25]. An interaction between Cue orientation and Target position, F(5,145) = 3.42, p = 0.006, \(\eta _{{\text{p}}}^{2}\) = 0.11, indicated lower accuracy for targets that occurred at the previous location of the neutral cues (upper, lower) vs. the eyes, mouth, and house top for upright cues [ts > 3.60, ps < 0.011, dzs > 0.66; all other ps > 0.24, dzs < 0.43] and lower accuracy for targets that occurred at the previous location of both neutral cues (upper, lower) vs. the eyes, mouth, and house bottom for inverted cues [ts > 3.57, ps < 0.011, dzs > 0.65; all other ps > 0.30, dzs < 0.40]. No other main effects or interactions were found, all other Fs < 2.64, ps > 0.12, \(\eta _{{\text{p}}}^{2}\) < 0.08.

References

  1. Anderson, C. J., Colombo, J., & Shaddy, J. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder. Journal of Clinical and Experimental Neuropsychology, 28, 1238–1256.

    Article  Google Scholar 

  2. Ariga, A., & Arihara, K. (2017a). Attentional capture by spatiotemporally task-irrelevant faces: supportive evidence for Sato and Kawahara (2015). Psychological research, 1–7. https://doi.org/10.1007/s00426-017-0869-3.

  3. Ariga, A., & Arihara, K. (2017b). Visual attention is captured by task-trrelevant faces, but not by pareidolia faces. Paper presented at the 2017 9th International Conference on Knowledge and Smart Technology (KST), Chonburi, Thailand.

  4. Bar-Haim, Y., Shulman, C., Lamy, D., & Reuveni, A. (2006). Attention to eyes and mouth in high-functioning children with autism. Journal of Autism and Developmental Disorders, 36(1), 131–137. https://doi.org/10.1007/s10803-005-0046-1.

    Article  PubMed  Google Scholar 

  5. Baron-Cohen, S. (1995). Mindblindness: an essay on autism and theory of mind. Cambridge: MIT Press.

    Google Scholar 

  6. Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological Studies of Face Perception in Humans. Journal of Cognitive Neuroscience, 8(6), 551–565. https://doi.org/10.1162/jocn.1996.8.6.551.

    Article  PubMed  Google Scholar 

  7. Bertelson, P. (1967). The time course of preparation. Quarterly Journal of Experimental Psychology, 19(3), 272–279. https://doi.org/10.1080/14640746708400102.

    Article  PubMed  Google Scholar 

  8. Bindemann, M., & Burton, A. M. (2008). Attention to upside-down faces: An exception to the inversion effect. Vision Research, 48(25), 2555–2561. https://doi.org/10.1016/j.visres.2008.09.001.

    Article  PubMed  Google Scholar 

  9. Bindemann, M., Burton, A. M., Hooge, I. T. C., Jenkins, R., & DeHaan, E. H. F (2005). Faces retain attention. Psychonomic Bulletin & Review, 12(6), 1048–1053.

    Article  Google Scholar 

  10. Bindemann, M., Burton, A. M., Langton, S. R., Schweinberger, S. R., & Doherty, M. J. (2007). The control of attention to faces. Journal of Vision, 7(10), 1–8. https://doi.org/10.1167/7.10.15.

    Article  PubMed  Google Scholar 

  11. Birmingham, E., Bischof, W., & Kingstone, A. (2007). Why do we look at people’s eyes? Journal of Eye Movement Research, 1(1), 1–6.

    Google Scholar 

  12. Birmingham, E., Bischof, W., & Kingstone, A. (2008a). Gaze selection in complex social scenes. Visual Cognition, 16(2–3), 341–355. https://doi.org/10.1080/13506280701434532.

    Article  Google Scholar 

  13. Birmingham, E., Bischof, W., & Kingstone, A. (2008b). Social attention and real-world scenes: The roles of action, competition and social content. The Quarterly Journal of Experimental Psychology, 61(7), 986–998.

    Article  Google Scholar 

  14. Birmingham, E., & Kingstone, A. (2009). Human Social Attention. Annals of the New York Academy of Sciences, 1156(1), 118–140. https://doi.org/10.1111/j.1749-6632.2009.04468.x.

    Article  PubMed  Google Scholar 

  15. Birmingham, E., Ristic, J., & Kingstone, A. (2012). Investigating social attention: A case for increasing stimulus complexity in the laboratory. In Cognitive neuroscience, development, and psychopathology: Typical and atypical developmental trajectories of attention (pp. 251–276). New York: Oxford University Press.

    Google Scholar 

  16. Boggia, J., & Ristic, J. (2015). Social event segmentation. Quarterly Journal of Experimental Psychology, 68(4), 731–744.

    Article  Google Scholar 

  17. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  Google Scholar 

  18. Campbell, F. W. (1957). The depth of field of the human eye. Optica Acta: International Journal of Optics, 4(4), 157–164. https://doi.org/10.1080/713826091.

    Article  Google Scholar 

  19. Capozzi, F., & Ristic, J. (2018). How attention gates social interactions. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.13854.

    Article  PubMed  Google Scholar 

  20. Cerf, M., Frady, E. P., & Koch, C. (2009). Faces and text attract gaze independent of the task: Experimental data and computer model. Journal of Vision, 9(12), 10–10. https://doi.org/10.1167/9.12.10.

    Article  PubMed  Google Scholar 

  21. Cerf, M., Harel, J., Einhäuser, W., & Koch, C. (2008). Predicting human gaze using low-level saliency combined with face detection. Paper presented at the Advances in neural information processing systems.

  22. Cooper, R. M., & Langton, S. R. Attentional bias to angry faces using the dot-probe task? It depends when you look for it. Behaviour Research and Therapy. 44(9), 1321–1329.

  23. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4), 1–17. https://doi.org/10.1167/10.4.16.

    Article  PubMed  Google Scholar 

  24. Crouzet, S. M., & Thorpe, S. J. (2011). Low-level cues and ultra-fast face detection. Frontiers in Psychology. 2(342). https://doi.org/10.3389/fpsyg.2011.00342.

  25. de Haan, B., Morgan, P. S., & Rorden, C. (2008). Covert orienting of attention and overt eye movements activate identical brain regions. Brain Research, 1204, 102–111. https://doi.org/10.1016/j.brainres.2008.01.105.

    Article  PubMed  Google Scholar 

  26. Devue, C., Belopolsky, A. V., & Theeuwes, J. (2012). Oculomotor guidance and capture by irrelevant faces. PLoS One. 7(4), e34598.

  27. Devue, C., Laloyaux, C., Feyers, D., Theeuwes, J., & Brédart, S. (2009). Do pictures of faces, and which ones, capture attention in the inattentional-blindness paradigm? Perception, 38(4), 552–568. https://doi.org/10.1068/p6049. doi.

    Article  PubMed  Google Scholar 

  28. Dunbar, R. I. M., & Shultz, S. (2007). Evolution in the social brain. Science, 317, 1344.

    Article  Google Scholar 

  29. Emery, N. J. (2000). The eyes have it: The neuroethology, function and evolution of social gaze. Neuroscience & Biobehavioral Reviews, 24, 581–604.

    Article  Google Scholar 

  30. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/bf03193146.

    Article  PubMed  Google Scholar 

  31. Findlay, J. M. (2003). Visual Selection, Covert Attention and Eye Movements. In J. M. Findlay & I. D. Gilchrist (Eds.), Active vision: The psychology of looking and seeing. Oxford: Oxford University Press.

    Google Scholar 

  32. Fletcher-Watson, S., Findlay, J. M., Leekam, S. R., & Benson, V. (2008). Rapid detection of person information in a naturalistic scene. Perception, 37(4), 571–583. https://doi.org/10.1068/p5705. doi.

    Article  PubMed  Google Scholar 

  33. Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110(2), 160–170. https://doi.org/10.1016/j.cognition.2008.11.010.

    Article  PubMed  Google Scholar 

  34. Frewen, P. A., Dozois, D. J. A., Joanisse, M. F., & Neufeld, R. W. J. (2008). Selective attention to threat versus reward: Meta-analysis and neural-network modeling of the dot-probe task. Clinical Psychology Review, 28(2), 307–337. https://doi.org/10.1016/j.cpr.2007.05.006.

    Article  PubMed  Google Scholar 

  35. Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12(3), 495–504.

    Article  Google Scholar 

  36. Gobel, M. S., Kim, H. S., & Richardson, D. C. (2015). The dual function of social gaze. Cognition, 136(Supplement C), 359–364. https://doi.org/10.1016/j.cognition.2014.11.040.

  37. Guillon, Q., Hadjikhani, N., Baduel, S., & Roge, B. (2014). Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neuroscience & Biobehavioral Reviews, 42, 279–297. https://doi.org/10.1016/j.neubiorev.2014.03.013.

    Article  Google Scholar 

  38. Guillon, Q., Rogé, B., Afzali, M. H., Baduel, S., Kruck, J., & Hadjikhani, N. (2016). Intact perception but abnormal orientation towards face-like objects in young children with ASD. Scientific Reports. 6, 22119. https://doi.org/10.1038/srep22119.

    Article  PubMed  Google Scholar 

  39. Haxby, J. V., Norwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. The Journal of Neuroscience, 14(11), 6336–6353.

    Article  Google Scholar 

  40. Hayward, D. A., & Ristic, J. (2013). Measuring attention using the Posner cuing paradigm: The role of across and within trial target probabilities. Frontiers in Human Neuroscience, 7, 205. https://doi.org/10.3389/fnhum.2013.00205.

    Article  PubMed  Google Scholar 

  41. Hayward, D. A., Voorhies, W., Morris, J. L., Capozzi, F., & Ristic, J. (2017). Staring reality in the face: A comparison of social attention across laboratory and real world measures suggests little common ground. Canadian Journal of Experimental Psychology, 71(3), 212–225.

    Article  Google Scholar 

  42. Hochberg, J., & Galper, R. E. (1967). Recognition of faces: An exploratory study. Psychonomic Science, 9, 619–620.

    Article  Google Scholar 

  43. Holm, S. (1979). A simple sequential rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  44. Hunt, A. R., & Kingstone, A. (2003a). Covert and overt voluntary attention: Linked or independent? Cognitive Brain Research, 18(1), 102–105. https://doi.org/10.1016/j.cogbrainres.2003.08.006.

    Article  PubMed  Google Scholar 

  45. Hunt, A. R., & Kingstone, A. (2003b). Inhibition of return: Dissociating attentional and oculomotor components. Journal of Experimental Psychology: Human Perception & Performance, 29(5), 1068–1074. https://doi.org/10.1037/0096-1523.29.5.1068.

    Article  Google Scholar 

  46. Itier, R. J., Latinus, M., & Taylor, M. J. (2006). Face, eye and object early processing: what is the face specificity? Neuroimage, 29(2), 667–676. https://doi.org/10.1016/j.neuroimage.2005.07.041.

    Article  PubMed  Google Scholar 

  47. Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: A repetition study using ERPs. Neuroimage, 15(2), 353–372. https://doi.org/10.1006/nimg.2001.0982.

    Article  PubMed  Google Scholar 

  48. Itier, R. J., & Taylor, M. J. (2004). Face recognition memory and configural processing: A developmental ERP study using upright, inverted, and contrast-reversed faces. Journal of Cognitive Neuroscience, 16(3), 487–502. https://doi.org/10.1162/089892904322926818.

    Article  PubMed  Google Scholar 

  49. Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye’s movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance (Vol (IX, pp. 187–203). Hillsdale: Erlbaum.

    Google Scholar 

  50. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.

    Article  Google Scholar 

  51. Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society London B: Biological Sciences, 361(1476), 2109–2128. https://doi.org/10.1098/rstb.2006.1934.

    Article  Google Scholar 

  52. Kendall, L. N., Raffaelli, Q., Kingstone, A., & Todd, R. M. (2016). Iconic faces are not real faces: Enhanced emotion detection and altered neural processing as faces become more iconic. Cognitive Research: Principles and Implications, 1(1), 19. https://doi.org/10.1186/s41235-016-0021-8.

    Article  Google Scholar 

  53. Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a foraging facilitator in visual search. Psychological Science, 10, 346–352.

    Article  Google Scholar 

  54. Klein, R. M., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive control of visual attention? Revisited! In Attention and performance 15: Conscious and nonconscious information processing (pp. 333–350). Cambridge: The MIT Press.

    Google Scholar 

  55. Kobayashi, H., & Kohshima, S. (2001). Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. Journal of Human Evolution, 40, 419–435.

    Article  Google Scholar 

  56. Kuhn, G., Teszka, R., Tenaw, N., & Kingstone, A. (2016). Don’t be fooled! Attentional responses to social cues in a face-to-face and video magic trick reveals greater top-down control for overt than covert attention. Cognition, 146, 136–142. https://doi.org/10.1016/j.cognition.2015.08.005.

    Article  PubMed  Google Scholar 

  57. Laidlaw, K. E. W., Badiudeen, T. A., Zhu, M. J. H., & Kingstone, A. (2015). A fresh look at saccadic trajectories and task irrelevant stimuli: Social relevance matters. Vision Research. 111, Part A, 82–90. https://doi.org/10.1016/j.visres.2015.03.024.

  58. Laidlaw, K. E. W., Foulsham, T., Kuhn, G., & Kingstone, A. (2011). Potential social interactions are important to social attention. Proceedings of the National Academy of Sciences, 108(14), 5548–5553. https://doi.org/10.1073/pnas.1017022108.

    Article  Google Scholar 

  59. Laidlaw, K. E. W., Risko, E. F., & Kingstone, A. (2012). A new look at social attention: orienting to the eyes is not (entirely) under volitional control. Journal of Experimental Psychology: Human Perception & Performance, 38(5), 1132–1143. https://doi.org/10.1037/a0027075.

    Article  Google Scholar 

  60. Langton, S. R., Law, A. S., Burton, A. M., & Schweinberger, S. R. (2008). Attention capture by faces. Cognition, 107(1), 330–342. https://doi.org/10.1016/j.cognition.2007.07.012.

    Article  PubMed  Google Scholar 

  61. Lavie, N., Ro, T., & Russell, C. (2003). The role of perceptual load in processing distractor faces. Psychological Science, 14, 510–515.

    Article  Google Scholar 

  62. Little, A. C., Jones, B. C., & DeBruine, L. M. (2011). The many faces of research on face perception. Philosophical Transactions of the Royal Society London B: Biological Sciences, 366(1571), 1634–1637. https://doi.org/10.1098/rstb.2010.0386.

    Article  Google Scholar 

  63. Ludbrook, J. (2000). Multiple inferences using confidence intervals. Clinical and Experimental Pharmacology and Physiology, 27(3), 212–215. https://doi.org/10.1046/j.1440-1681.2000.03223.x.

    Article  PubMed  Google Scholar 

  64. MacLeod, C., Mathews, A. M., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15–20.

    Article  Google Scholar 

  65. McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 9(5), 605–610. https://doi.org/10.1162/jocn.1997.9.5.605.

    Article  PubMed  Google Scholar 

  66. McPartland, J. C., Webb, S. J., Keehn, B., & Dawson, G. (2011). Patterns of visual attention to faces and objects in autism spectrum disorder. Journal of Autism and Developmental Disorders, 41(2), 148–157.

    Article  Google Scholar 

  67. Nakamura, K., & Kawabata, H. (2014). Attractive faces temporally modulate visual attention. Frontiers in Psychology. 5(620). https://doi.org/10.3389/fpsyg.2014.00620.

  68. Navon, D., & Margalit, B. (1983). Allocation of attention according to informativeness in visual recognition. Quarterly Journal of Experimental Psychology, 35, 497–512.

    Article  Google Scholar 

  69. Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: Overlapping neural systems. Neuroimage, 11(3), 210–216. https://doi.org/10.1006/nimg.2000.0539.

    Article  PubMed  Google Scholar 

  70. Nummenmaa, L., & Calder, A. J. (2008). Neural mechanisms of social attention. Trends in Cognitive Sciences, 13(3), 135–143. https://doi.org/10.1016/j.tics.2008.12.006.

    Article  Google Scholar 

  71. Perrett, D. I., Hietanen, J. K., Oram, M. W., Benson, P. J., & Rolls, E. T. (1992). Organization and functions of cells responsive to faces in the temporal cortex [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 335(1273), 23–30.

    Article  Google Scholar 

  72. Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D., & Jeeves, M. A. (1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London. Series B, Biological Sciences, 223(1232), 293–317.

    Article  Google Scholar 

  73. Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Perception & Psychophysics, 66(3), 398–405. https://doi.org/10.3758/bf03194888.

    Article  Google Scholar 

  74. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231.

    Article  Google Scholar 

  75. Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. The Journal of Neuroscience, 18(6), 2188–2199.

    Article  Google Scholar 

  76. Rhodes, G. (1985). Lateralized processes in face recognition. British Journal of Psychology, 76(2), 249–271. https://doi.org/10.1111/j.2044-8295.1985.tb01949.x.

    Article  PubMed  Google Scholar 

  77. Riby, D., & Hancock, P. J. B. (2009). Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism. Journal of Intellectual Disability Research, 53(2), 169–181. https://doi.org/10.1111/j.1365-2788.2008.01142.x.

    Article  PubMed  Google Scholar 

  78. Risko, E. F., Richardson, D. C., & Kingstone, A. (2016). Breaking the fourth wall of cognitive science. Current Directions in Psychological Science, 25(1), 70–74. https://doi.org/10.1177/0963721415617806.

    Article  Google Scholar 

  79. Ro, T., Russell, C., & Lavie, N. (2001). Changing faces: A detection advantage in the flicker paradigm. Psychological Science, 12(1), 94–99.

    Article  Google Scholar 

  80. Rossion, B., Joyce, C. A., Cottrell, G. W., & Tarr, M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 20(3), 1609–1624. https://doi.org/10.1016/j.neuroimage.2003.07.010.

    Article  PubMed  Google Scholar 

  81. Rousselet, G. A., Ince, R. A., van Rijsbergen, N. J., & Schyns, P. G. (2014). Eye coding mechanisms in early human face event-related potentials. Journal of Vision, 14(13), 1–24. https://doi.org/10.1167/14.13.7.

    Article  Google Scholar 

  82. Sato, S., & Kawahara, J. I. (2015). Attentional capture by completely task-irrelevant faces. Psychological Research Psychologische Forschung, 79(4), 523–533. https://doi.org/10.1007/s00426-014-0599-8.

    Article  PubMed  Google Scholar 

  83. Schaller, M., Park, J. H., & Kenrick, D. T. (2007). Human evolution & social cognition. In R. I. M. Dunbar & L. Barrett (Eds.), Oxford handbook of evolutionary psychology. Oxford: Oxford University Press.

    Google Scholar 

  84. Schmukle, S. C. (2005). Unreliability of the dot probe task. European Journal of Personality, 19(7), 595–605. https://doi.org/10.1002/per.554.

    Article  Google Scholar 

  85. Silva, A., Macedo, A. F., Albuquerque, P. B., & Arantes, J. (2016). Always on my mind? Recognition of attractive faces may not depend on attention. Frontiers in Psychology, 7, 53. https://doi.org/10.3389/fpsyg.2016.00053.

    Article  PubMed  Google Scholar 

  86. Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969. https://doi.org/10.3389/fpsyg.2015.00969.

    Article  PubMed  Google Scholar 

  87. Smilek, D., Birmingham, E., Cameron, D., Bischof, W., & Kingstone, A. (2006). Cognitive ethology and exploring attention in real-world scenes. Brain Research, 1080(1), 101–119. https://doi.org/10.1016/j.brainres.2005.12.090.

    Article  PubMed  Google Scholar 

  88. Smith, T. J. (2013). Watching you watch movies: Using eye tracking to inform film theory.

  89. Sui, J., & Liu, C. H. (2009). Can beauty be ignored? Effects of facial attractiveness on covert attention. Psychonomic Bulletin & Review, 16(2), 276–281. https://doi.org/10.3758/PBR.16.2.276.

    Article  Google Scholar 

  90. Theeuwes, J., & Van der Stigchel, S. (2006). Faces capture attention: Evidence from inhibition of return. Visual Cognition, 13(6), 657–665. https://doi.org/10.1080/13506280500410949.

    Article  Google Scholar 

  91. Thomas, L. A., De Bellis, M. D., Graham, R., & LaBar, K. S. (2007). Development of emotional facial recognition in late childhood and adolescence. Developmental Science, 10(5), 547–558. https://doi.org/10.1111/j.1467-7687.2007.00614.x.

    Article  PubMed  Google Scholar 

  92. Tomalski, P., Johnson, M. H., & Csibra, G. (2009). Temporal-nasal asymmetry of rapid orienting to face-like stimuli. NeuroReport, 20(15), 1309–1312.

    Article  Google Scholar 

  93. Van der Stigchel, S., & Theeuwes, J. (2007). The relationship between covert and overt attention in endogenous cuing. Perception & Psychophysics, 69(5), 719–731.

    Article  Google Scholar 

  94. Võ, M. L.-H., Smith, T. J., Mital, P. K., & Henderson, J. M. (2012). Do the eyes really have it? Dynamic allocation of attention when viewing moving faces. Journal of Vision, 12(13), 3. https://doi.org/10.1167/12.13.3.

    Article  PubMed  Google Scholar 

  95. Vuilleumier, P. (2000). Faces call for attention: evidence from patients with visual extinction. Neuropsychologia, 38, 693–700.

    Article  Google Scholar 

  96. Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684. https://doi.org/10.3758/brm.42.3.671.

    Article  PubMed  Google Scholar 

  97. Wu, D. W.-L., Bischof, W. F., & Kingstone, A. (2013). Looking while eating: The importance of social context to social attention. Scientific Reports, 3, 2356.

    Article  Google Scholar 

  98. Yarbus, A. L. (1967). Eye Movements & Vision. New York: Plenum Press.

    Google Scholar 

  99. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.

    Article  Google Scholar 

  100. Yovel, G., Levy, J., Grabowecky, M., & Paller, K. A. (2003). Neural correlates of the left-visual-field superiority in face perception appear at multiple stages of face processing. Journal of Cognitive Neuroscience, 15(3), 462–474.

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to J. Michelin and E. Bossard for their help with this project. The data sets from the current study are available from the corresponding author on reasonable request.

Funding

This study was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) and NSERC-CREATE graduate fellowships to EJP, NSERC, and Social Sciences and Humanities Research Council (SSHRC) grants to EB and JR, and W. Dawson award to JR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Effie J. Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in these studies involved human participants and were in accordance with the ethical standards of the institutional and/or national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, E.J., Birmingham, E. & Ristic, J. The eyes do not have it after all? Attention is not automatically biased towards faces and eyes. Psychological Research 84, 1407–1423 (2020). https://doi.org/10.1007/s00426-018-1130-4

Download citation