Skip to main content
Log in

Not scene learning, but attentional processing is superior in team sport athletes and action video game players

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We tested if high-level athletes or action video game players have superior context learning skills. Incidental context learning was tested in a spatial contextual cueing paradigm. We found comparable contextual cueing of visual search in repeated displays in high-level amateur handball players, dedicated action video game players and normal controls. In contrast, both handball players and action video game players showed faster search than controls, measured as search time per display item, independent of display repetition. Thus, our data do not indicate superior context learning skills in athletes or action video game players. Rather, both groups showed more efficient visual search in abstract displays that were not related to sport-specific situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abernethy, B. (1987). Selective attention in fast ball sports: II: Expert-novice differences. Australian Journal of Science and Medicine in Sport, 19(4), 7–16.

    Google Scholar 

  • Abernethy, B. (1988). Visual search in sport and ergonomics: Its relationship to selective attention and performer expertise. Human Performance, 1(4), 205–235.

    Google Scholar 

  • Abernethy, B. (1991). Visual search strategies and decision-making in sport. International Journal of Sport Psychology, 22, 189–210.

    Google Scholar 

  • Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 14,1–10. https://doi.org/10.1167/7.13.14.

    Google Scholar 

  • Bavelier, D., Green, C. S., Han, D. H., Renshaw, P. F., Merzenich, M. M., & Gentile, D. A. (2011). Brains on video games. Nature Reviews Neuroscience, 12(12), 763–768.

    PubMed  PubMed Central  Google Scholar 

  • Bejjanki, V. R., Zhang, R., Li, R., Green, C. S., Lu, Z. L., & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences of the USA, 111, 16961–16966. https://doi.org/10.1073/pnas.1417056111.

    PubMed  Google Scholar 

  • Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2.

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    PubMed  Google Scholar 

  • Buckley, D., Codina, C., Bhardwaj, P., & Pascalis, O. (2010). Action video game players and deaf observers have larger Goldmann visual fields. Vision Research, 50(5), 548–556.

    PubMed  Google Scholar 

  • Castel, A. D., Pratt, J., & Drummond, E. (2005). The effect of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica, 119, 217–230.

    PubMed  Google Scholar 

  • Chisholm, J. D., & Kingstone, A. (2012). Improved top-down control reduces oculomotor capture: The case of action video game players. Attention, Perception, & Psychophysics, 74(2), 257–262.

    Google Scholar 

  • Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. Attention, Perception, & Psychophysics, 72(3), 667–671.

    Google Scholar 

  • Chun, M. M. (2000). Contextual cuing of visual attention. Trends in Cognitive Sciences, 4, 170–178.

    PubMed  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual Cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.

    PubMed  Google Scholar 

  • Clark, J. E., Lanphear, A. K., & Riddick, C. C. (1987). The effects of videogame playing on the response selection processing of elderly adults. Journal of Gerontology. 42.1., 82–85.

    PubMed  Google Scholar 

  • Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology, 5, 781. https://doi.org/10.3389/fpsyg.2014.00781

    PubMed  PubMed Central  Google Scholar 

  • Faubert, J. (2013). Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Scientific Reports, 3, 1–3.

    Google Scholar 

  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18(10), 850–855.

    PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537.

    PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1465–1478.

    PubMed  Google Scholar 

  • Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychological Science, 18(1), 88–94.

    PubMed  PubMed Central  Google Scholar 

  • Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22, 197–206.

    Google Scholar 

  • Hubert-Wallander, B., Green, C. S., Sugarman, B., & Bavelier, D. (2011). Changes in search rate but not in the dynamics of exognous attention in action videogame players. Attention, Perception and Psychophysics, 73, 2399–2412.

    PubMed  Google Scholar 

  • Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11, 342–348.

    PubMed  Google Scholar 

  • Kristjansson, A. (2013). The case for causal influences of action videogame play upon vision and attention. Attention,. Perception, and Psychophysics, 75, 667–672.

    Google Scholar 

  • Kristjansson, A. (2015). Reconsidering visual search. i-Perception. 6, 6. https://doi.org/10.1177/2041669515614670.

    Google Scholar 

  • Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cueing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33(4), 816–828.

    PubMed  Google Scholar 

  • Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature neuroscience, 12(5), 549–551.

    PubMed  PubMed Central  Google Scholar 

  • Lleras, A., & Von Mühlenen, A. (2004). Spatial context and top-down strategies in visual search. Spatial Vision, 17(4–5), 465–482.

    PubMed  Google Scholar 

  • Manginelli, A. A., Geringswald, F., & Pollmann, S. (2012). Visual search facilitation in repeated displays depends on visuospatial working memory. Experimental Psychology, 59, 47–54.

    PubMed  Google Scholar 

  • Manginelli, A. A., Langer, N., Klose, D., & Pollmann, S. (2013). Contextual cueing under working memory load: Selective interference of visuospatial load with expression of learning. Attention, Perception, & Psychophysics, 75(6), 1103–1117.

    Google Scholar 

  • Manginelli, A. A., & Pollmann, S. (2009). Misleading contextual cues - how do they affect visual search? Psychological Research Psychologische Forschung, 73, 212–221.

    PubMed  Google Scholar 

  • Mann, D. T. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport and Exercise Psychology, 29, 457–478.

    PubMed  Google Scholar 

  • Merkel, C., Hopf, J. M., & Schoenfeld, M. A. (2017). Spatio-temporal dynamics of attentional selection stages during multiple object tracking. Neuroimage, 146, 484–491. https://doi.org/10.1016/j.neuroimage.2016.10.046.

    PubMed  Google Scholar 

  • Müller-Plath, G., & Pollmann, S. (2003). Determining subprocesses of visual feature search with reaction time models. Psychological Research, 67(2), 80–105.

    PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.

    PubMed  Google Scholar 

  • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179–197.

    PubMed  Google Scholar 

  • Timmis, M. A., Turner, K., & van Paridon, K. N. (2014). Visual search strategies of soccer players executing a power vs. placement penalty kick. Plos One, 9(12), e115179. https://doi.org/10.1371/journal.pone.0115179.

    PubMed  PubMed Central  Google Scholar 

  • Tseng, Y.-C., & Li, C.-S. R. M. (2004). Oculomotor correlates of context-guided learning in visual search. Perception and Psychophysics, 66(8), 1363–1378.

    PubMed  Google Scholar 

  • Wu, S., & Spence, I. (2013). Playing shooter and driving videogames improves top-down guidance in visual search. Attention, Perception, and Psychophysics, 75, 673–686.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (PO548/14-1 and SFB779-A4).

Author information

Authors and Affiliations

Authors

Contributions

AS designed the study, wrote the experimental code, acquired and analyzed the data and wrote the manuscript. FG wrote the experimental code and analyzed the data. FS analyzed the data. SP designed the study and wrote the manuscript.

Corresponding author

Correspondence to Stefan Pollmann.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, A., Geringswald, F., Sharifian, F. et al. Not scene learning, but attentional processing is superior in team sport athletes and action video game players. Psychological Research 84, 1028–1038 (2020). https://doi.org/10.1007/s00426-018-1105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1105-5

Navigation