Multiple distance cues do not prevent systematic biases in reach to grasp movements

Abstract

The perceived distance of objects is biased depending on the distance from the observer at which objects are presented, such that the egocentric distance tends to be overestimated for closer objects, but underestimated for objects further away. This leads to the perceived depth of an object (i.e., the perceived distance from the front to the back of the object) also being biased, decreasing with object distance. Several studies have found the same pattern of biases in grasping tasks. However, in most of those studies, object distance and depth were solely specified by ocular vergence and binocular disparities. Here we asked whether grasping objects viewed from above would eliminate distance-dependent depth biases, since this vantage point introduces additional information about the object’s distance, given by the vertical gaze angle, and its depth, given by contour information. Participants grasped objects presented at different distances (1) at eye-height and (2) 130 mm below eye-height, along their depth axes. In both cases, grip aperture was systematically biased by the object distance along most of the trajectory. The same bias was found whether the objects were seen in isolation or above a ground plane to provide additional depth cues. In two additional experiments, we verified that a consistent bias occurs in a perceptual task. These findings suggest that grasping actions are not immune to biases typically found in perceptual tasks, even when additional cues are available. However, online visual control can counteract these biases when direct vision of both digits and final contact points is available.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bozzacchi, C., Brenner, E., Smeets, J. B., Volcic, R., & Domini, F. (2018). How removing visual information affects grasping movements. Experimental Brain Research, 236, 985–995. https://doi.org/10.1007/s00221-018-5186-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bozzacchi, C., & Domini, F. (2015). Lack of depth constancy for grasping movements in both virtual and real environments. Journal of Neurophysiology, 114(4), 2242–2248. http://doi.org/http://dx.doi.org/ https://doi.org/10.1152/jn.00350.2015.

  3. Bozzacchi, C., Volcic, R., & Domini, F. (2014). Effect of visual and haptic feedback on grasping movements. Journal of Neurophysiology, 112(12), 3189–3196. https://doi.org/10.1152/jn.00439.2014.

    Article  PubMed  Google Scholar 

  4. Bozzacchi, C., Volcic, R., & Domini, F. (2016). Grasping in absence of feedback: systematic biases endure extensive training. Experimental Brain Research, 234, 255–265. https://doi.org/10.1007/s00221-015-4456-9.

    Article  PubMed  Google Scholar 

  5. Brenner, E., & Smeets, J. B. J. (1997). Fast responses of the human hand to changes in target position. Journal of Motor Behavior, 29(4), 297–310.

    Article  Google Scholar 

  6. Brenner, E., & Van Damme, W. J. M. (1999). Perceived distance, shape and size. Vision Research, 39(5), 975–986. https://doi.org/10.1016/S0042-6989(98)00162-X.

    Article  PubMed  Google Scholar 

  7. Campagnoli, C., Croom, S., & Domini, F. (2017). Stereovision for action reflects our perceptual experience of distance and depth. Journal of Vision, 17(9), 1–26. https://doi.org/10.1167/17.9.21.doi.

    Article  Google Scholar 

  8. Campagnoli, C., & Domini, F. (2016). Conscious perception and grasping rely on a shared depth encoding. Journal of Vision, 16, 449. https://doi.org/10.1167/16.12.449.

    Article  Google Scholar 

  9. Campagnoli, C., & Domini, F. (2018). Depth-cue combination yields identical biases in perception and grasping. Manuscript submitted for publication.

  10. Chen, J., Sperandio, I., & Goodale, M. A. (2018). Proprioceptive distance cues restore perfect size constancy in grasping, but not perception, when vision is limited. Current Biology. https://doi.org/10.1016/j.cub.2018.01.076.

    Article  PubMed  Google Scholar 

  11. Domini, F., & Caudek, C. (2013). Perception and action without veridical metric reconstruction: An affine approach. In Shape perception in human and computer vision (pp. 285–298). London: Springer.

    Google Scholar 

  12. Foley, J. M. (1980). Binocular distance perception. Psychological Review, 87(5), 411–434. https://doi.org/10.1037/h0021465.

    Article  PubMed  Google Scholar 

  13. Franz, V. H. (2003). Manual size estimation: a neuropsychological measure of perception? Experimental Brain Research, 151, 471–477.

    Article  Google Scholar 

  14. Fukui, T., & Inui, T. (2006). The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping. Human Movement Science, 25, 349–371. https://doi.org/10.1016/j.humov.2006.02.002.

    Article  PubMed  Google Scholar 

  15. Gardner, P. L., & Mon-Williams, M. (2001). Vertical gaze angle: Absolute height-in-scene information for the programming of prehension. Experimental Brain Research, 136(3), 379–385. https://doi.org/10.1007/s002210000590.

    Article  PubMed  Google Scholar 

  16. Glover, S., & Dixon, P. (2002). Dynamic effects of the Ebbinghaus illusion in grasping: Support for a planning/control model of action. Perception & Psychophysics, 64(2), 266–278.

    Article  Google Scholar 

  17. Goodale, M. A. (2011). Transforming vision into action. Vision Research, 51(13), 1567–1587.

    Article  Google Scholar 

  18. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  Google Scholar 

  19. Greenwald, H. S., Knill, D. C., & Saunders, J. A. (2005). Integrating visual cues for motor control: A matter of time. Vision Research, 45, 1975–1989. https://doi.org/10.1016/j.visres.2005.01.025.

    Article  PubMed  Google Scholar 

  20. Heath, M., Rival, C., & Binsted, G. (2004). Can the motor system resolve a premovement bias in grip aperture? Online analysis of grasping the Müller-Lyer illusion. Experimental Brain Research, 158, 378–384. https://doi.org/10.1007/s00221-004-1988-9.

    Article  PubMed  Google Scholar 

  21. Hibbard, P. B., & Bradshaw, M. F. (2003). Reaching for virtual objects: Binocular disparity and the control of prehension. Experimental Brain Research, 148(2), 196–201. https://doi.org/10.1007/s00221-002-1295-2.

    Article  PubMed  Google Scholar 

  22. Higashiyama, A., & Ueyama, E. (1988). The perception of vertical and horizontal distances in outdoor settings. Perception & Psychophysics, 44(2), 151–156. https://doi.org/10.3758/BF03208707.

    Article  Google Scholar 

  23. Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208. https://doi.org/10.1007/BF00231054.

    Article  PubMed  Google Scholar 

  24. Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.

    Article  Google Scholar 

  25. Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behavioural Brain Research, 19, 99–116.

    Article  Google Scholar 

  26. Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360. https://doi.org/10.1016/0042-6989(91)90056-B.

    Article  PubMed  Google Scholar 

  27. Keefe, B. D., Hibbard, P. B., & Watt, S. J. (2011). Depth-cue integration in grasp programming: No evidence for a binocular specialism. Neuropsychologia, 49, 1246–1257. https://doi.org/10.1016/j.neuropsychologia.2011.02.047.

    Article  PubMed  Google Scholar 

  28. Keefe, B. D., & Watt, S. J. (2017). Viewing geometry determines the contribution of binocular vision to the online control of grasping. Experimental Brain Research. https://doi.org/10.1007/s00221-017-5087-0.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kopiske, K. K., & Domini, F. (2018). On the response function and range dependence of manual estimation. Experimental Brain Research, 236, 1309–1320. https://doi.org/10.1007/s00221-018-5223-5.

    Article  PubMed  Google Scholar 

  30. Marotta, J. J., & Goodale, M. A. (1998). The role of learned pictorial cues in the programming and control of grasping. Experimental Brain Research, 121, 465–470. https://doi.org/10.1007/s002210050482.

    Article  PubMed  Google Scholar 

  31. Melmoth, D. R., & Grant, S. (2006). Advantages of binocular vision for the control of reaching and grasping. Experimental Brain Research, 171(3), 371–388. https://doi.org/10.1007/s00221-005-0273-x.

    Article  PubMed  Google Scholar 

  32. Melmoth, D. R., Storoni, M., Todd, G., Finlay, A. L., & Grant, S. (2007). Dissociation between vergence and binocular disparity cues in the control of prehension. Experimental Brain Research, 183(3), 283–298. https://doi.org/10.1007/s00221-007-1041-x.

    Article  PubMed  Google Scholar 

  33. Mon-Williams, M., McIntosh, R. D., & Milner, A. D. (2001). Vertical gaze angle as a distance cue for programming reaching: Insights from visual form agnosia II (of III). Experimental Brain Research, 139(2), 137–142. https://doi.org/10.1007/s002210000658.

    Article  PubMed  Google Scholar 

  34. Nicolini, C., Fantoni, C., Mancuso, G., Volcic, R., & Domini, F. (2014). A framework for the study of vision in active observers. In B. Rogowitz, T. Pappas, & H. de Ridder (eds.), Proceedings of the SPIE (Vol. 9014, p. 901414). San Francisco. https://doi.org/10.1117/12.2045459.

  35. Norman, J. F., Todd, J. T., Perotti, V. J., & Tittle, J. S. (1996). The visual perception of three-dimensional length. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 173–186. https://doi.org/10.1037/0096-1523.22.1.173.

    Article  PubMed  Google Scholar 

  36. R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org.

  37. Servos, P. (2000). Distance estimation in the visual and visuomotor systems. Experimental Brain Research, 130, 35–47. https://doi.org/10.1007/s002210050004.

    Article  PubMed  Google Scholar 

  38. Servos, P., Goodale, M. A., & Jakobson, L. S. (1992). The role of binocular vision in prehension: A kinematic analysis. Vision Research, 32(8), 1513–1521.

    Article  Google Scholar 

  39. Smeets, J. B. J., & Brenner, E. (1999). A new view on grasping. Motor Control, 3(3), 237–271.

    Article  Google Scholar 

  40. Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects.. Scientific Reports, 1, 1–10. https://doi.org/10.1038/srep00130.

    Article  Google Scholar 

  41. Verheij, R., Brenner, E., & Smeets, J. B. J. (2012). Grasping kinematics from the perspective of the individual digits: A modelling study. PLoS ONE, 7(3), e33150. https://doi.org/10.1371/journal.pone.0033150.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Volcic, R., & Domini, F. (2016). On-line visual control of grasping movements. Experimental Brain Research, 234, 2165–2177. https://doi.org/10.1007/s00221-016-4620-x.

    Article  PubMed  Google Scholar 

  43. Volcic, R., Fantoni, C., Caudek, C., Assad, J. A., & Domini, F. (2013). Visuomotor adaptation changes stereoscopic depth perception and tactile discrimination. Journal of Neuroscience, 33(43), 17081–17088. https://doi.org/10.1523/JNEUROSCI.2936-13.2013.

    Article  PubMed  Google Scholar 

  44. Wallach, H., & O’Leary, A. (1982). Slope of regard as a distance cue. Perception & Psychophysics, 31(2), 145–148. https://doi.org/10.3758/BF03206214.

    Article  Google Scholar 

  45. Whitwell, R. L., & Goodale, M. A. (2013). Grasping without vision: Time normalizing grip aperture profiles yields spurious grip scaling to target size. Neuropsychologia, 51(10), 1878–1887. https://doi.org/10.1016/j.neuropsychologia.2013.06.015.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karl K. Kopiske.

Ethics declarations

Conflict of interest

Chiara Bozzacchi declares that she has no conflict of interest. Karl K. Kopiske declares that he has no conflict of interest. Robert Volcic declares that he has no conflict of interest. Fulvio Domini declares that he has no conflict of interest. Ethical approval: All procedures performed involving human participants were in accordance with the ethical standards of the institutional research committee (Comitato Etico per la Sperimentazione con l’Essere Vivente of the University of Trento) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent: Informed consent was obtained from all individual participants included in the study. Some of data described here have also been presented at the 2018 European Conference on Visual Perception.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopiske, K.K., Bozzacchi, C., Volcic, R. et al. Multiple distance cues do not prevent systematic biases in reach to grasp movements. Psychological Research 83, 147–158 (2019). https://doi.org/10.1007/s00426-018-1101-9

Download citation