Skip to main content
Log in

Task-set control, chunking, and hierarchical timing in rhythm production

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We investigated task-set control processes and chunking in 16 novices and 16 amateur musicians, who produced unimanual rhythms in three experimental conditions: low-level timing tasks required isochronous tapping at constant target durations; sequencing tasks consisted of individual rhythmic patterns comprising multiple target durations; the task-set control condition required alternations between two rhythmic patterns. According to our hierarchical timing control model conditions differed in their task-set control demands necessary to provide rhythm programs for the sequencing of individual intervals. Transitions at predicted chunk boundaries were marked by increased frequencies of sequence errors, relative lengthening of intervals preceding the switch to a new rhythm chunk, and increased variabilities in intervals immediately following a switch. Amateur musicians showed superior timing (less variability) in complex rhythm tasks. Moreover, they made fewer sequence errors than novices at set-switch points with their error patterns suggesting that they relied on larger chunks compared with novices. Our findings elucidate the time course of task reconfiguration processes in rhythm production and the role of chunking in the context of musical skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allport, DA, Styles AE, & Hsieh, S. (1994). Shifting attentional set—exploring the dynamic control of tasks. Attention and Performance XV, Vol. XV.

  • Bailey, J. A., & Penhune, V. B. (2010). Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Experimental Brain Research, 204(1), 91–101.

    Article  PubMed  Google Scholar 

  • Beek, P. J., Peper, C. E., & Daffertshofer, A. (2002). Modeling rhythmic interlimb coordination: Beyond the Haken–Kelso–Bunz model. Brain and Cognition, 48(1), 149–165.

    Article  PubMed  Google Scholar 

  • Block, R. A., Hancock, P. A., & Zakay, D. (2010). How cognitive load affects duration judgments: A meta-analytic review. Acta Psychologica, 134(3), 330–343.

    Article  PubMed  Google Scholar 

  • Block, R. A., Zakay, D., & Hancock, P. A. (1998). Human aging and duration judgments: a meta-analytic review. Psychology and Aging, 13(4), 584–596.

    Article  PubMed  Google Scholar 

  • Block, R. A., Zakay, D., & Hancock, P. A. (1999). Developmental changes in human duration judgments: A meta-analytic review. Developmental Review, 19(1), 183–211.

    Article  Google Scholar 

  • Bolton, T. L. (1894). Rhythm. The American Journal of Psychology, 6(2), 145–238.

    Article  Google Scholar 

  • Bouwer, F. L., Burgoyne, J. A., Odijk, D., Honing, H., & Grahn, J. A. (2018). What makes a rhythm complex? The influence of musical training and accent type on beat perception. PloS One, 13(1), e0190322.

  • Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), nrn1764.

    Article  Google Scholar 

  • Carrara-Augustenborg, C., & Schultz, B. G. (2017). The implicit learning of metrical and non-metrical rhythms in blind and sighted adults. Psychological Research Psychologische Forschung, 1–17.

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20(2), 226–239.

    Article  PubMed  Google Scholar 

  • Drake, C. (1993). Reproduction of musical rhythms by children, adult musicians, and adult nonmusicians. Perception & Psychophysics, 53(1), 25–33.

    Article  Google Scholar 

  • Engbert, R., Scheffczyk, C., Krampe, R. T., Rosenblum, M., Kurths, J., & Kliegl, R. (1997). Tempo-induced transitions in polyrhythmic hand movements. Physical Review E, 56(5), 5823–5833.

    Article  Google Scholar 

  • Ericcson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science (New York, N.Y.), 208(4448), 1181–1182.

    Article  Google Scholar 

  • Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory. American Scientist, 70(6), 607–615.

    PubMed  Google Scholar 

  • Essens, P. J., & Povel, D.-J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37(1), 1–7.

    Article  Google Scholar 

  • Fraisse, P. (1946). II. - Mouvements rythmiques et arythmiques. L’Année psychologique, 47(1), 11–27.

    Article  Google Scholar 

  • Garner, W. R., & Gottwald, R. L. (1968). The perception and learning of temporal patterns. The Quarterly Journal of Experimental Psychology, 20(2), 97–109.

    Article  PubMed  Google Scholar 

  • Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(23), 7540–7548.

    Article  Google Scholar 

  • Grange, J. A., & Houghton, G. (2010). Task preparation and task inhibition: a comment on Koch, Gade, Schuch, & Philipp (2010). Psychonomic Bulletin & Review, 18(1), 211–216.

    Article  Google Scholar 

  • Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics, 72(3), 561–582.

    Article  Google Scholar 

  • Honing, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 85–91.

    Article  PubMed  Google Scholar 

  • Iversen, J. R., Patel, A. D., & Ohgushi, K. (2008). Perception of rhythmic grouping depends on auditory experience. The Journal of the Acoustical Society of America, 124(4), 2263–2271.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Hazeltine, R. E. (1995). Perception and production of temporal intervals across a range of durations: Evidence for a common timing mechanism. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 3–18.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., & Richardson, T. C. (2002). Temporal control and coordination: The multiple timer model. Brain and Cognition, 48(1), 117–132.

    Article  PubMed  Google Scholar 

  • Jersild, A. T. (1927). Mental set and shift. New York. Retrieved from http://archive.org/details/mentalsetshift00jers.

  • Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323–355.

    Article  PubMed  Google Scholar 

  • Jones, M. R. (2009). Musical time. In S. Hallam, I. Cross & M. Thaut (Eds.), The handbook of musical psychology (pp. 81–92). New York: Oxford University Press.

    Google Scholar 

  • Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459–491.

    Article  PubMed  Google Scholar 

  • Keele, S. W. (1968). Movement control in skilled motor performance., 70, 387–403.

  • Keele, S. W. (1986). Motor control. In (Eds.), Handbook of perception and human performance (Vol. 2). New York, NY: Wiley. K. R. Boff, L. Kaufman, & J. P. Thomas.

    Google Scholar 

  • Kincaid, A. E., Duncan, S., & Scott, S. A. (2002). Assessment of fine motor skill in musicians and nonmusicians: Differences in timing versus sequence accuracy in a bimanual fingering task. Perceptual and Motor Skills, 95(1), 245–257.

    Article  PubMed  Google Scholar 

  • Krampe, R. T., Engbert, R., & Kliegl, R. (2002). Representational models and nonlinear dynamics: Irreconcilable approaches to human movement timing and coordination or two sides of the same coin? Introduction to the special issue on movement timing and coordination. Introduction. Brain and Cognition, 48(1), 1–6.

    Article  PubMed  Google Scholar 

  • Krampe, R. T, Kliegl, R, Mayr, U, Engbert, R, & Vorberg, D (2000). The fast and the slow of skilled bimanual rhythm production: Parallel versus integrated timing. Journal of Experimental Psychology. Human Perception and Performance, 26(1), 206–233.

    Article  PubMed  Google Scholar 

  • Krampe, R. T., Mayr, U., & Kliegl, R. (2005). Timing, sequencing, and executive control in repetitive movement production. Journal of Experimental Psychology. Human Perception and Performance, 31(3), 379–397.

    Article  PubMed  Google Scholar 

  • Large, E., & Riess Jones, M. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119–159.

    Article  Google Scholar 

  • Large, E. W., Herrera, J. A., & Velasco, M. J. (2015). Neural networks for beat perception in musical rhythm. Frontiers in Systems Neuroscience, 9.

  • Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26(1), 1–37.

    Article  Google Scholar 

  • Lashley, K. S. (1951). The problem of serial order in behavior. In Cerebral mechanisms in behavior. New York: Wiley.

    Google Scholar 

  • Lustig, C., & Meck, W. H. (2001). Paying attention to time as one gets older. Psychological Science, 12(6), 478–484.

    Article  PubMed  Google Scholar 

  • Matthews, T. E., Thibodeau, J. N. L., Gunther, B. P., & Penhune, V. B. (2016). The impact of instrument-specific musical training on rhythm perception and production. Frontiers in Psychology, 7, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr, U. (2009). Sticky plans: Inhibition and binding during serial-task control. Cognitive Psychology, 59(2), 123–153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward inhibition. Journal of Experimental Psychology: General, 129(1), pp. 4–26.

    Article  Google Scholar 

  • Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate practice is necessary but not sufficient to explain individual differences in piano sight-reading skill: The role of working memory capacity. Psychological Science, 21(7), 914–919.

    Article  PubMed  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.

    Article  PubMed  Google Scholar 

  • Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Memory & Cognition, 31(3), 327–342.

    Article  Google Scholar 

  • Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433.

    Article  PubMed  Google Scholar 

  • Neath, I., & Surprenant, A. M. (2003). Human memory: An introduction to research, data, and theory. Thomson/Wadsworth, Belmont

    Google Scholar 

  • Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the Beat: movement influences infant rhythm perception. Science; Washington, 308(5727), 1430.

    Article  Google Scholar 

  • Povel, D.-J., & Essens, P. (1985). Perception of temporal patterns. Music Perception: An Interdisciplinary Journal, 2(4), 411–440.

    Article  Google Scholar 

  • Repp, B. H., & Bruttomesso, M. (2010). A filled duration illusion in music: Effects of metrical subdivision on the perception and production of beat tempo. Advances in Cognitive Psychology, 5, 114–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General; Washington, 124(2), 207.

    Article  Google Scholar 

  • Rosenbaum, D. A., Kenny, S. B., & Derr, M. A. (1983). Hierarchical control of rapid movement sequences. Journal of Experimental Psychology. Human Perception and Performance, 9(1), 86–102.

    Article  PubMed  Google Scholar 

  • Schmitz, F., & Voss, A. (2014). Components of task switching: a closer look at task switching and cue switching. Acta Psychologica, 151, 184–196.

    Article  PubMed  Google Scholar 

  • Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013). The implicit learning of metrical and nonmetrical temporal patterns. The Quarterly Journal of Experimental Psychology, 66(2), 360–380.

    Article  PubMed  Google Scholar 

  • Stevens, L. T. (1886). On The Time-Sense. Mind, 11(43), 393–404.

    Article  Google Scholar 

  • Strobach, T., Liepelt, R., Schubert, T., & Kiesel, A. (2012). Task switching: effects of practice on switch and mixing costs. Psychological Research Psychologische Forschung, 76(1), 74–83.

    Article  PubMed  Google Scholar 

  • Thaut, M. H., Trimarchi, P. D., & Parsons, L. M. (2014). Human brain basis of musical rhythm perception: Common and distinct neural substrates for meter, tempo, and pattern. Brain Sciences, 4(2), 428–452.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulving, E., & Craik, F. I. M. (Eds.). (2005). The Oxford Handbook of Memory. Oxford: Oxford University Press.

    Google Scholar 

  • van der Weij, B., Pearce, M. T., & Honing, H. (2017). A probabilistic model of meter perception: Simulating enculturation. Frontiers in Psychology, 8.

  • Vorberg, D., & Hambuch, R. (1978). On the temporal control of rhythmic performance. In Attention and performance (pp. 535–555). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Vorberg, D., & Hambuch, R. (1984). Timing of two-handed rhythmic performance. Annals of the New York Academy of Sciences, 423, 390–406.

    Article  PubMed  Google Scholar 

  • Vorberg, D., & Wing, A. M. (1996). Modelling variability and dependence in timing. In H. Heuer & S. W. Keele (Eds.), Handbook of perception and action (Vol. 3, pp. 181–261). London: Academic Press.

    Google Scholar 

  • Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14(1), 5–12.

    Article  Google Scholar 

  • Wing, A. M., & Kristofferson, A. B. (1973). The timing of interresponse intervals., 13, 455–460.

  • Yu, M., Getz, L., & Kubovy, M. (2015). Perceiving the initial note: Quantitative models of how listeners parse cyclical auditory patterns. Attention, Perception, & Psychophysics, 77(8), 2728–2739.

    Article  Google Scholar 

Download references

Acknowledgements

Discussions during a precursor of this study by Ulrich Mayr and Dirk Vorberg and their help in designing the sequences are gratefully acknowledged.

Funding

L. Dietmar Hestermann, Johan Wagemans and Ralf T. Krampe, University of Leuven, Belgium. Completion of his work was possible through FWO grant (Fonds Wetenschappelijk Onderzoek, Belgium) G.0379.06 to Ralf Krampe and by a long-term structural grant from the Flemish government to Johan Wagemans (METH/08/02 and METH/14/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars D. Hestermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hestermann, L.D., Wagemans, J. & Krampe, R.T. Task-set control, chunking, and hierarchical timing in rhythm production. Psychological Research 83, 1685–1702 (2019). https://doi.org/10.1007/s00426-018-1038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1038-z

Navigation