Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 421–452). Cambridge : MIT Press.
Google Scholar
Allport, A., & Wylie, G. (1999). Task switching: Positive and negative priming of task-set. In G. W. Humphreys, J. Duncan, & A. M. Treisman (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp. 273–296). Oxford: Oxford University Press.
Google Scholar
Allport, D. A., & Wylie, G. (2000). “Task-switching”, stimulus–response bindings, and negative priming. In S. Monsell & J. S. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 35–70). Cambridge: MIT Press.
Google Scholar
Arbuthnott, K. D. (2008). Asymmetric switch cost and backward inhibition: Carryover activation and inhibition in switching between tasks of unequal difficulty. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 62, 91–100.
Article
PubMed
Google Scholar
Astle, D. E., Jackson, G. M., & Swainson, R. (2012). Two measures of task-specific inhibition. The Quarterly Journal of Experimental Psychology, 6, 233–251.
Article
Google Scholar
Barutchu, A., Becker, S. I., Carter, O., Hester, R., & Levy, N. L. (2013). The role of task-related learned representations in explaining asymmetries in task switching. PLoS One, 8, e61729. doi:10.1371/journal.pone.0061729.
Article
PubMed
PubMed Central
Google Scholar
Botvinick, M. M., Braver, T., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.
Article
PubMed
Google Scholar
Bryck, R. L., & Mayr, U. (2008). Task selection cost asymmetry without task switching. Psychonomic Bulletin & Review, 15, 128–134.
Article
Google Scholar
Cole, M.W., Braver, T.S., & Meiran, N. (2017). The task novelty paradox: Flexible control of inflexible neural pathways during rapid instructed task learning. Neuroscience & Biobehavioral Reviews. doi:10.1016/j.neubiorev.2017.02.009.
Google Scholar
Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets in task switching? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32, 1221–1233.
Article
PubMed
Google Scholar
Dreisbach, G., Goschke, T., & Haider, H. (2007). The role of task-rules and stimulus–response mappings in the task switching paradigm. Psychological Research, 71, 383–392.
Article
PubMed
Google Scholar
Dreisbach, G., & Haider, H. (2008). That’s what task sets are for: Shielding against distraction. Psychological Research, 72, 355–361.
Article
PubMed
Google Scholar
Dreisbach, G., & Haider, H. (2009). How task representations guide attention: further evidence for the shielding function of task sets. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 477–486.
Article
PubMed
Google Scholar
Fagot, C. (1994). Chronometric investigations of task switching. Ph.D. thesis, University of California, San Diego.
Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task–set switching. In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII: Control of cognitive processes (pp. 331–355). Cambridge: MIT Press.
Google Scholar
Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480.
Article
Google Scholar
Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5, 183–216.
Article
Google Scholar
Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in cognitive sciences, 8, 494–500.
Article
PubMed
Google Scholar
Horoufchin, H., Philipp, A. M., & Koch, I. (2011). Temporal distinctiveness and repetition benefits in task switching: Disentangling stimulus—related and response—related contributions. The Quarterly Journal of Experimental Psychology, 64, 434–446.
Article
PubMed
Google Scholar
Hsieh, S., Chang, C. C., & Meiran, N. (2012). Episodic retrieval and decaying inhibition in the competitor-rule suppression phenomenon. Acta Psychologica, 141, 316–321.
Article
PubMed
Google Scholar
JASP Team (2017). JASP (Version 0.7) (computer software)
Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138.
Article
PubMed
Google Scholar
Jeffreys, H. (1961). Theory of probability. Oxford: Oxford University Press.
Google Scholar
Katzir, M., Ori, B., Eyal, T., & Meiran, N. (2015a). Go with the flow: How the consideration of joy versus pride influences automaticity. Acta Psychologica, 155, 57–66.
Article
PubMed
Google Scholar
Katzir, M., Ori, B., Hsieh, S., & Meiran, N. (2015b). Competitor rule priming: Evidence for priming of task rules in task switching. Psychological Research, 79(3), 446–462.
Article
PubMed
Google Scholar
Katzir, M., Ori, B., & Meiran, N. (2017). Relevant rule activation as a means to resolve conflicts during task switching. (unpublished manuscript).
Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026.
Article
PubMed
Google Scholar
Kiesel, A., Wendt, M., & Peters, A. (2007). Task switching: On the origin of response congruency effects. Psychological Research, 71, 117–125.
Article
PubMed
Google Scholar
Kleiman, T., Hassin, R. R., & Trope, Y. (2014). The control-freak mind: Stereotypical biases are eliminated following conflict-activated cognitive control. Journal of Experimental Psychology: General, 143(2), 498–503.
Article
Google Scholar
Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin & Review, 17, 1–14.
Article
Google Scholar
Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.
Article
PubMed
Google Scholar
Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88, 223–242.
Article
PubMed
Google Scholar
Kunde, W., & Wühr, P. (2006). Sequential modulations of correspondence effects across spatial dimensions and tasks. Memory & Cognition, 34, 356–367.
Article
Google Scholar
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.
Article
PubMed
Google Scholar
Masson, M. E. J., Bub, D. N., Woodward, T. S., & Chan, J. C. K. (2003). Modulation of word-reading processes in task switching. Journal of Experimental Psychology: General, 132, 400–418.
Article
Google Scholar
Maxwell, S.E., & Delaney, H.D. (2003). Designing experiments and analyzing data: A model comparison perspective (Vol. 1). Psychology Press.
Mayr, U. (2001). Age differences in the selection of mental sets: the role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16, 96–109.
Article
PubMed
Google Scholar
Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26.
Article
Google Scholar
Meiran, N. (2000). Modeling cognitive control in task-switching. Psychological Research, 63, 234–249.
Article
PubMed
Google Scholar
Meiran, N. (2005). Task rule-congruency and Simon-like effects in switching between spatial tasks. The Quarterly Journal of Experimental Psychology Section A, 58(6), 1023–1041.
Article
Google Scholar
Meiran, N. (2010). Task switching: Mechanisms underlying rigid vs. flexible self control. In R. R. Hassin, K. N. Ochsner, & Y. Trope (Eds.), Self control in society, mind, and brain (pp. 202–220). New York: Oxford University Press.
Chapter
Google Scholar
Meiran, N., Hsieh, S., & Chang, C. C. (2011). “Optimal inhibition”: Electrophysiological evidence for the suppression of conflict—generating task rules during task switching. Cognitive, Affective & Behavioral Neuroscience, 11, 292–308.
Article
Google Scholar
Meiran, N., Hsieh, S., & Dimov, E. (2010). Resolving task rule incongruence during task switching by competitor rule suppression. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 992–1002.
Article
PubMed
Google Scholar
Meiran, N., & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.
PubMed
Google Scholar
Navon, D. (1984). Resources—A theoretical soup stone? Psychological Review, 91(2), 216–234.
Article
Google Scholar
Navon, D., & Gopher, D. (1979). On the economy of the human-processing system. Psychological Review, 86(3), 214–255.
Article
Google Scholar
Navon, D., & Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 435–448.
PubMed
Google Scholar
Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251.
Article
PubMed
Google Scholar
Oberauer, K. (2001). Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(4), 948–957.
Article
PubMed
Google Scholar
Oberauer, K., Souza, A. S., Druey, M. D., & Gade, M. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66(2), 157–211.
Article
PubMed
Google Scholar
Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. The Quarterly Journal of Experimental Psychology, 41(1), 19–45.
Article
Google Scholar
Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.
Article
Google Scholar
Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374.
Article
Google Scholar
Rubin, O., & Meiran, N. (2005). On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(6), 1477–1491.
Article
PubMed
Google Scholar
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime [Computer software]. Pittsburgh: Psychology Software Tools.
Google Scholar
Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105.
PubMed
Google Scholar
Steinhauser, M., & Hübner, R. (2006). Response-based strengthening in task shifting: evidence from shift effects produced by errors. Journal of Experimental Psychology: Human Perception and Performance, 32, 517–534.
PubMed
Google Scholar
Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89–103.
PubMed
Google Scholar
Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37(4), 571–590.
Article
PubMed
Google Scholar
Tipper, S. P., & Milliken, B. (1996). Distinguishing between inhibition-based and episodic retrieval-based accounts of negative priming. In A. F. Kramer, M. G. H. Coles, & G. D. Logan (Eds.), Converging operations in the study of visual selective attention (pp. 337–363). Washington, DC: American Psychological Association, xxv.
Chapter
Google Scholar
Tipper, S. P., Weaver, B., & Houghton, G. (1994). Behavioural goals determine inhibitory mechanisms of selective attention. The Quarterly Journal of Experimental Psychology, 47(4), 809–840.
Article
Google Scholar
Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3–18.
PubMed
Google Scholar
van’t Wout, F., Lavric, A., & Monsell, S. (2015). Is it harder to switch among a larger set of tasks? Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 363–376.
Google Scholar
Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 4(46), 361–413.
Article
Google Scholar
Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50(4), 233–238.
Article
PubMed
Google Scholar
Yehene, E., & Meiran, N. (2007). Is there a general task switching ability? Acta Psychologica, 126(3), 169–195.
Article
PubMed
Google Scholar
Yehene, E., Meiran, N., & Soroker, N. (2005). Task alternation cost without task alternation: Measuring intentionality. Neuropsychologia, 43(13), 1858–1869.
Article
PubMed
Google Scholar
Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 455–469.
PubMed
Google Scholar
Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29, 919–936.
PubMed
Google Scholar