Psychological Research

, Volume 82, Issue 1, pp 215–229 | Cite as

Task intentions and their implementation into actions: cognitive control from adolescence to middle adulthood

  • Edita Poljac
  • Rianne Haartsen
  • Renske van der Cruijsen
  • Andrea Kiesel
  • Ervin Poljac
Original Article


Cognitive control processes involved in human multitasking arise, mature, and decline across age. This study investigated how age modulates cognitive control at two different levels: the level of task intentions and the level of the implementation of intentions into the corresponding actions. We were particularly interested in specifying maturation of voluntary task choice (intentions) and task-switching execution (their implementations) between adolescence and middle adulthood. Seventy-four participants were assigned to one of the four age groups (adolescents, 12–17 years; emerging adults, 18–22 years; young adults, 23–27 years; middle-aged adults, 28–56 years). Participants chose between two simple cognitive tasks at the beginning of each trial before pressing a spacebar to indicate that the task choice was made. Next, a stimulus was presented in one of the three adjacent boxes, with participants identifying either the location or the shape of the stimulus, depending on their task choice. This voluntary task-switching paradigm allowed us to investigate the intentional component (task choice) separately from its implementation (task execution). Although all participants showed a tendency to repeat tasks more often than switching between them, this repetition bias was significantly stronger in adolescents than in any adult group. Furthermore, participants generally responded slower after task switches than after task repetitions. This switch cost was similar across tasks in the two younger groups but larger for the shape than the location task in the two older groups. Together, our results demonstrate that both task intentions and their implementation into actions differ across age in quite specific ways.



We thank Vincent Hoofs and Vera van ‘t Hoff for their tremendous help with data collection. Further, we thank Lea Ueberholz for her help with figures and tables and Lisa Hüther for proofreading the manuscript. Edita Poljac and Andrea Kiesel were supported by a Grant awarded to Andrea Kiesel within the Priority Program, SPP 1772 from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Grant No. Ki1388-/7-1. Rianne Haartsen was supported by a grant from the European Community’s Horizon 2020 Program under Grant Agreement No. 642996 (BRAINVIEW). Ervin Poljac was supported by the Marie Skłodowska-Curie mobility programme of the EU FP7 (REA Grant Agreement No. 624080).

Compliance with ethical standards

Conflict of interest

The authors declare to have no conflict of interest. We agree to allow the journal to review the (raw) data if requested.

Ethical approval

All procedures performed in the present study involve human participants and were in accordance with the ethical standards of the institutional, national research committee, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standard.

Informed consent

Informed consent was obtained from all individual participants (and both their parents for the minors) included in the study.


  1. Allport, A., Styles, E. A., & Hsieh, S. L. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance XV: Conscious and unconscious information processing (pp. 421–452). Cambridge, MA: MIT Press.Google Scholar
  2. Arbuthnott, K. D. (2008). Asymmetric switch cost and backward inhibition: Carryover activation and inhibition in switching between tasks of unequal difficulty. Canadian Journal of Experimental Psychology, 62(2), 91–100. doi: 10.1037/1196-1961.62.2.91.CrossRefPubMedGoogle Scholar
  3. Arrington, C. M., & Logan, G. D. (2004). The cost of a voluntary task switch. Psychological Science, 15(9), 610–615. doi: 10.1111/j.0956-7976.2004.00728.x.CrossRefPubMedGoogle Scholar
  4. Arrington, C. M., & Logan, G. D. (2005). Voluntary task switching: Chasing the elusive homunculus. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(4), 683–702. doi: 10.1037/0278-7393.31.4.683.CrossRefPubMedGoogle Scholar
  5. Arrington, C. M., Weaver, S. M., & Pauker, R. L. (2010). Stimulus-based priming of task choice during voluntary task switching. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(4), 1060–1067. doi: 10.1037/a0019646.CrossRefPubMedGoogle Scholar
  6. Arrington, C. M., & Yates, M. M. (2009). The role of attentional networks in voluntary task switching. Psychonomic Bulletin and Review, 16(4), 660–665. doi: 10.3758/pbr.16.4.660.CrossRefPubMedGoogle Scholar
  7. Barutchu, A., Becker, S. I., Carter, O., Hester, R., & Levy, N. L. (2013). The role of task-related learned representations in explaining asymmetries in task switching. PLoS One, 8(4), e61729. doi: 10.1371/journal.pone.0061729.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 1641–1660. doi: 10.1111/j.1467-8624.2010.01499.x.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bryck, R. L., & Mayr, U. (2008). Task selection cost asymmetry without task switching. Psychonomic Bulletin and Review, 15(1), 128–134. doi: 10.3758/Pbr.15.1.128.CrossRefPubMedGoogle Scholar
  10. Butler, K. M., Arrington, C. M., & Weywadt, C. (2011). Working memory capacity modulates task performance but has little influence on task choice. Memory and Cognition, 39(4), 708–724. doi: 10.3758/s13421-010-0055-y.CrossRefPubMedGoogle Scholar
  11. Butler, K. M., & Weywadt, C. (2013). Age differences in voluntary task switching. Psychology and Aging, 28(4), 1024–1031. doi: 10.1037/a0034937.CrossRefPubMedGoogle Scholar
  12. Butler, K. M., & Zacks, R. T. (2006). Age deficits in the control of prepotent responses: Evidence for an inhibitory decline. Psychology and Aging, 21(3), 638–643. doi: 10.1037/0882-7974.21.3.638.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cepeda, N. J., Kramer, A. F., & de Sather, J. C. M. G. (2001). Changes in executive control across the life span: Examination of task-switching performance. Developmental Psychology, 37(5), 715–730. doi: 10.1037//0012-1649.37.5.715.CrossRefPubMedGoogle Scholar
  14. Clapp, W. C., & Gazzaley, A. (2012). Distinct mechanisms for the impact of distraction and interruption on working memory in aging. Neurobiology of Aging, 33(1), 134–148. doi: 10.1016/j.neurobiolaging.2010.01.012.CrossRefPubMedGoogle Scholar
  15. Clapp, W. C., Rubens, M. T., Sabharwal, J., & Gazzaley, A. (2011). Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults. Proceedings of the National academy of Sciences of the United States of America, 108(17), 7212–7217. doi: 10.1073/pnas.1015297108.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cohen, A. O., Breiner, K., Steinberg, L., Bonnie, R. J., Scott, E. S., Taylor-Thompson, K., & Casey, B. J. (2016). When Is an adolescent an adult? Assessing cognitive control in emotional and nonemotional contexts. Psychological Science, 27(4), 549–562. doi: 10.1177/0956797615627625.CrossRefPubMedGoogle Scholar
  17. Costa, A., & Santesteban, M. (2004). Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of Memory and Language, 50(4), 491–511. doi: 10.1016/j.jml.2004.02.002.CrossRefGoogle Scholar
  18. Cragg, L., & Chevalier, N. (2012). The processes underlying flexibility in childhood. The Quarterly Journal of Experimental Psychology, 65(2), 209–232. doi: 10.1080/17470210903204618.CrossRefPubMedGoogle Scholar
  19. Craik, F. I. M., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131–138. doi: 10.1016/j.tics.2006.01.007.CrossRefPubMedGoogle Scholar
  20. Crone, E. A., Wendelken, C., Donohue, S., van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences, 103(24), 9315–9320. doi: 10.1073/pnas.0510088103.CrossRefGoogle Scholar
  21. De Jong, R. (1995). Strategical determinants of compatibility effects with task uncertainty. Acta Psychologica, 88(3), 187–207. doi: 10.1016/0001-6918(94)E0067-P.CrossRefGoogle Scholar
  22. Demanet, J., Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2010). Voluntary task switching under load: Contribution of top-down and bottom-up factors in goal-directed behavior. Psychonomic Bulletin & Review, 17(3), 387–393. doi: 10.3758/Pbr.17.3.387.CrossRefGoogle Scholar
  23. Dibbets, P., & Jolles, J. (2006). The Switch Task for Children: Measuring mental flexibility in young children. Cognitive Development, 21(1), 60–71. doi: 10.1016/j.cogdev.2005.09.004.CrossRefGoogle Scholar
  24. Eich, T. S., MacKay-Brandt, A., Stern, Y., & Gopher, D. (2016). Age-based differences in task switching are moderated by executive control demands. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. doi: 10.1093/geronb/gbw117.Google Scholar
  25. Ellefson, M. R., Shapiro, L. R., & Chater, N. (2006). Asymmetrical switch costs in children. Cognitive Development, 21(2), 108–130. doi: 10.1016/j.cogdev.2006.01.002.CrossRefGoogle Scholar
  26. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479. doi: 10.1016/j.neuroimage.2005.02.004.CrossRefPubMedGoogle Scholar
  27. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi: 10.3758/bf03193146.CrossRefPubMedGoogle Scholar
  28. Fischer, R., & Plessow, F. (2015). Efficient multitasking: Parallel versus serial processing of multiple tasks. Frontiers in Psychology, 6, 1366. doi: 10.3389/fpsyg.2015.01366.PubMedPubMedCentralGoogle Scholar
  29. Forstmann, B. U., Brass, M., Koch, I., & von Cramon, D. Y. (2006). Voluntary selection of task sets revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 18(3), 388–398. doi: 10.1162/jocn.2006.18.3.388.CrossRefPubMedGoogle Scholar
  30. Gilbert, S. J., & Shallice, T. (2002). Task switching: A PDP model. Cognitive Psychology, 44(3), 297–337. doi: 10.1006/cogp.2001.0770.CrossRefPubMedGoogle Scholar
  31. Gollan, T. H., & Ferreira, V. S. (2009). Should I stay or should I switch? A cost–benefit analysis of voluntary language switching in young and aging bilinguals. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35(3), 640–665. doi: 10.1037/a0014981.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Goschke, T., & Dreisbach, G. (2008). Conflict-triggered goal shielding: Response conflicts attenuate background monitoring for prospective memory cues. Psychological Science, 19(1), 25–32. doi: 10.1111/j.1467-9280.2008.02042.x.CrossRefPubMedGoogle Scholar
  33. Gross, M., & Kaushanskaya, M. (2015). Voluntary language switching in English-Spanish bilingual children. Journal of Cognitive Psychology, 27(8), 992–1013. doi: 10.1080/20445911.2015.1074242.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoffmann, J., Kiesel, A., & Sebald, A. (2003). Task switches under Go/NoGo conditions and the decomposition of switch costs. European Journal of Cognitive Psychology, 15(1), 101–128. doi: 10.1080/09541440303602.CrossRefGoogle Scholar
  35. Hübner, M., Kluwe, R. H., Luna-Rodriguez, A., & Peters, A. (2004). Response selection difficulty and asymmetrical costs of switching between tasks and stimuli: No evidence for an exogenous component of task-set reconfiguration. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1043–1063. doi: 10.1037/0096-1523.30.6.1043.PubMedGoogle Scholar
  36. Jost, K., Hennecke, V., & Koch, I. (2017). Task dominance determines backward inhibition in task switching. Frontiers in Psychology, 8, 755. doi: 10.3389/fpsyg.2017.00755.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching—a review. Psychological Bulletin, 136(5), 849–874. doi: 10.1037/A0019842.CrossRefPubMedGoogle Scholar
  38. Kievit, R. A., Davis, S. W., Mitchell, D. J., Taylor, J. R., Duncan, J., & Henson, R. N. A. (2014). Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nature Communications, 5, 5658. doi: 10.1038/ncomms6658.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koch, I. (2001). Automatic and intentional activation of task sets. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(6), 1474–1486. doi: 10.1037/0278-7393.27.6.1474.CrossRefPubMedGoogle Scholar
  40. Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory and Cognition, 34(2), 433–444. doi: 10.3758/bf03193420.CrossRefPubMedGoogle Scholar
  41. Koch, I., Gade, M., Schuch, S., & Philipp, A. M. (2010). The role of inhibition in task switching: A review. Psychonomic Bulletin and Review, 17(1), 1–14. doi: 10.3758/pbr.17.1.1.CrossRefPubMedGoogle Scholar
  42. Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–682. doi: 10.1037/a0020198.CrossRefGoogle Scholar
  43. Kray, J. (2006). Task-set switching under cue-based versus memory-based switching conditions in younger and older adults. Brain Research, 1105(1), 83–92. doi: 10.1016/j.brainres.2005.11.016.CrossRefPubMedGoogle Scholar
  44. Kray, J., Eber, J., & Lindenberger, U. (2004). Age differences in executive functioning across the lifespan: The role of verbalization in task preparation. Acta Psychologica, 115(2–3), 143–165. doi: 10.1016/j.actpsy.2003.12.001.CrossRefPubMedGoogle Scholar
  45. Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15(1), 126–147. doi: 10.1037/0882-7974.15.1.126.CrossRefPubMedGoogle Scholar
  46. Lawo, V., Philipp, A. M., Schuch, S., & Koch, I. (2012). The role of task preparation and task inhibition in age-related task-switching deficits. Psychology and Aging, 27(4), 1130–1137. doi: 10.1037/a0027455.CrossRefPubMedGoogle Scholar
  47. Liefooghe, B., Demanet, J., & Vandierendonck, A. (2009). Is advance reconfiguration in voluntary task switching affected by the design employed? The Quarterly Journal of Experimental Psychology, 62(5), 850–857. doi: 10.1080/17470210802570994.CrossRefPubMedGoogle Scholar
  48. Liefooghe, B., Demanet, J., & Vandierendonck, A. (2010). Persisting activation in voluntary task switching: It all depends on the instructions. Psychonomic Bulletin and Review, 17(3), 381–386. doi: 10.3758/Pbr.17.3.381.CrossRefPubMedGoogle Scholar
  49. Lucenet, J., Blaye, A., Chevalier, N., & Kray, J. (2014). Cognitive control and language across the life span: Does labeling improve reactive control? Developmental Psychology, 50(5), 1620–1627. doi: 10.1037/a0035867.CrossRefPubMedGoogle Scholar
  50. Manzi, A., Nessler, D., Czernochowski, D., & Friedman, D. (2011). The development of anticipatory cognitive control processes in task-switching: An ERP study in children, adolescents and young adults. Psychophysiology, 48(9), 1258–1275. doi: 10.1111/j.1469-8986.2011.01192.x.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mayr, U. (2001). Age differences in the selection of mental sets: The role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16(1), 96–109. doi: 10.1037/0882-7974.16.1.96.CrossRefPubMedGoogle Scholar
  52. Mayr, U., & Bell, T. (2006). On how to be unpredictable: Evidence from the voluntary task-switching paradigm. Psychological Science, 17(9), 774–780. doi: 10.1111/j.1467-9280.2006.01781.x.CrossRefPubMedGoogle Scholar
  53. Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129(1), 4–26. doi: 10.1037/0096-3445.129.1.4.CrossRefGoogle Scholar
  54. Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology. Learning, Memory, and Cognition, 22(6), 1423–1442. doi: 10.1037/0278-7393.22.6.1423.CrossRefGoogle Scholar
  55. Meiran, N., Gotler, A., & Perlman, A. (2001). Old age is associated with a pattern of relatively intact and relatively impaired task-set switching abilities. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 56(2), 88–102. doi: 10.1093/geronb/56.2.P88.CrossRefGoogle Scholar
  56. Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40(1), 25–40. doi: 10.1006/jmla.1998.2602.CrossRefGoogle Scholar
  57. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. doi: 10.1146/annurev.neuro.24.1.167.CrossRefPubMedGoogle Scholar
  58. Millington, R. S., Poljac, E., & Yeung, N. (2013). Between-task competition for intentions and actions. The Quarterly Journal of Experimental Psychology, 66(8), 1504–1516. doi: 10.1080/17470218.2012.746381.CrossRefPubMedGoogle Scholar
  59. Mittelstädt, V., Dignath, D., Schmidt-Ott, M., & Kiesel, A. (2017). Exploring the repetition bias in voluntary task switching. Psychological Research. doi: 10.1007/s00426-017-0911-5.PubMedGoogle Scholar
  60. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140. doi: 10.1016/s1364-6613(03)00028-7.CrossRefPubMedGoogle Scholar
  61. Monsell, S., Yeung, N., & Azuma, R. (2000). Reconfiguration of task-set: Is it easier to switch to the weaker task? Psychological Research, 63(3), 250–264. doi: 10.1007/s004269900005.CrossRefPubMedGoogle Scholar
  62. Park, D. C., & Festini, S. B. (2017). Theories of memory and aging: A look at the past and a glimpse of the future. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 72(1), 82–90. doi: 10.1093/geronb/gbw066.CrossRefGoogle Scholar
  63. Philipp, A. M., Gade, M., & Koch, I. (2007). Inhibitory processes in language switching: Evidence from switching language-defined response sets. European Journal of Cognitive Psychology, 19(3), 395–416. doi: 10.1080/09541440600758812.CrossRefGoogle Scholar
  64. Poljac, E., & Bekkering, H. (2009). Generic cognitive adaptations to task interference in task switching. Acta Psychologica, 132(3), 279–285.CrossRefPubMedGoogle Scholar
  65. Poljac, E., Haan, A., & Galen, G. P. (2006). Current task activation predicts general effects of advance preparation in task switching. Experimental Psychology, 53(4), 260–267. doi: 10.1027/1618-3169.53.4.260.CrossRefPubMedGoogle Scholar
  66. Poljac, E., Koch, I., & Bekkering, H. (2009). Dissociating restart cost and mixing cost in task switching. Psychological Research, 73(3), 407–416. doi: 10.1007/s00426-008-0151-9.CrossRefPubMedGoogle Scholar
  67. Poljac, E., Poljac, E., & Yeung, N. (2012). Cognitive control of intentions for voluntary actions in individuals with a high level of autistic traits. Journal of Autism and Developmental Disorders, 42(12), 2523–2533. doi: 10.1007/s10803-012-1509-9.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Poljac, E., & Yeung, N. (2014). Dissociable neural correlates of intention and action preparation in voluntary task switching. Cerebral Cortex, 24(2), 465–478. doi: 10.1093/cercor/bhs326.CrossRefPubMedGoogle Scholar
  69. Reimers, S., & Maylor, E. A. (2005). Task switching across the fife span: Effects of age on general and specific switch costs. Developmental Psychology, 41(4), 661–671. doi: 10.1037/0012-1649.41.4.661.CrossRefPubMedGoogle Scholar
  70. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207–231.CrossRefGoogle Scholar
  71. Sanbonmatsu, D. M., Strayer, D. L., Medeiros-Ward, N., & Watson, J. M. (2013). Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking. PLoS One, 8(1), e54402. doi: 10.1371/journal.pone.0054402.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schel, M. A., Scheres, A., & Crone, E. A. (2014). New perspectives on self-control development: Highlighting the role of intentional inhibition. Neuropsychologia, 65, 236–246. doi: 10.1016/j.neuropsychologia.2014.08.022.CrossRefPubMedGoogle Scholar
  73. Schneider, D. W., & Anderson, J. R. (2010). Asymmetric switch costs as sequential difficulty effects. The Quarterly Journal of Experimental Psychology, 63(10), 1873–1894. doi: 10.1080/17470211003624010.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Schuch, S. (2016). Task inhibition and response inhibition in older vs. younger adults: A diffusion model analysis. Frontiers in Psychology, 7, 1722. doi: 10.3389/fpsyg.2016.01722.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Schuch, S., & Konrad, K. (2017). Investigating task inhibition in children versus adults: A diffusion model analysis. Journal of Experimental Child Psychology, 156, 143–167. doi: 10.1016/j.jecp.2016.11.012.CrossRefPubMedGoogle Scholar
  76. Terry, C. P., & Sliwinski, M. J. (2012). Aging and random task switching: The role of endogenous versus exogenous task selection. Experimental Aging Research, 38(1), 87–109. doi: 10.1080/0361073x.2012.637008.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vandierendonck, A., Demanet, J., Liefooghe, B., & Verbruggen, F. (2012). A chain-retrieval model for voluntary task switching. Cognitive Psychology, 65(2), 241–283. doi: 10.1016/j.cogpsych.2012.04.003.CrossRefPubMedGoogle Scholar
  78. Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience and Biobehavioral Reviews, 26(7), 849–857. doi: 10.1016/S0149-7634(02)00071-4.CrossRefPubMedGoogle Scholar
  79. Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M. J. (2011). Aging and task switching: A meta-analysis. Psychology and Aging, 26(1), 15–20. doi: 10.1037/a0020912.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Waszak, F., Hommel, B., & Allport, A. (2005). Interaction of task readiness and automatic retrieval in task switching: Negative priming and competitor priming. Memory and Cognition, 33(4), 595–610. doi: 10.3758/bf03195327.CrossRefPubMedGoogle Scholar
  81. Wolff, N., Roessner, V., & Beste, C. (2016). Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Scientific Reports. doi: 10.1038/srep28954.Google Scholar
  82. Yeung, N. (2010). Bottom-up influences on voluntary task switching: The elusive homunculus escapes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(2), 348–362. doi: 10.1037/a0017894.CrossRefPubMedGoogle Scholar
  83. Yeung, N., & Monsell, S. (2003a). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Perfomance, 29(5), 919–936. doi: 10.1037/0096-1523.29.5.919.Google Scholar
  84. Yeung, N., & Monsell, S. (2003b). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 455–469. doi: 10.1037/0096-1523.29.2.455.PubMedGoogle Scholar
  85. Zanolie, K., & Crone, E. A. (2017). Development of cognitive control across childhood and adolescence. In J. Wixted (Ed.), The Stevens’ handbook of experimental psychology and cognitive neuroscience (Vol. 3). New York: Wiley. (in press).Google Scholar
  86. Zanto, T. P., & Gazzaley, A. (2013). Fronto-parietal network: Flexible hub of cognitive control. Trends in Cognitive Sciences, 17(12), 602–603. doi: 10.1016/j.tics.2013.10.001.CrossRefPubMedGoogle Scholar
  87. Zelazo, P. D., Craik, F. I. M., & Booth, L. (2004). Executive function across the life span. Acta Psychologica, 115(2–3), 167–183. doi: 10.1016/j.actpsy.2003.12.005.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of PsychologyUniversity of FreiburgFreiburgGermany
  3. 3.Department of PsychologyUniversity of FreiburgFreiburgGermany
  4. 4.Centre for Brain and Cognitive DevelopmentBirkbeck, University of LondonLondonUK
  5. 5.Department of PsychologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations