Ironic capture: top-down expectations exacerbate distraction in visual search

Abstract

Ironic processing refers to the phenomenon where attempting to resist doing something results in a person doing that very thing. Here, we report three experiments investigating the role of ironic processing in visual search. In Experiment 1, we informed observers that they could predict the location of a salient color singleton in a visual search task and found that response times were slower in that condition than in a condition where the singleton’s location was random. Experiment 2 used the same experimental design but did not inform participants of the color singleton’s behavior. Experiment 3 showed that the cost in the predictable condition was not due to dual task costs or block order effects and participants attempting to use the strategy showed a larger cost in the predictable condition than those who abandoned using that location foreknowledge. In this case, responses in the predictable color singleton condition were equivalent with the random color singleton condition. This suggests that having more knowledge about an upcoming, salient distractor ironically increases its interfering influence on performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    In the no additional singleton case, a switch is when all the display items changed color from the previous trial.

  2. 2.

    There was a marginal main effect of color repeat/switch, F(3,42) = 3.316, p = 0.090, \(\eta_{p}^{2}\) = 0.191, with mean RTs being 7 ms slower on switch compared to repeat trials, consistent with previous work (Becker, 2007).

  3. 3.

    Of course, this hypothesis also assumes that the effect is phenomenologically valid. In our experience of testing the experimental program, we found that this was case, though we have much more experience with these tasks than our participants do. Anecdotal conversations during participant debriefing, however, suggested that participants experienced the same costs.

  4. 4.

    Color repeat/switch main effect, F(3,42) = 2.599, p = 0.129, \(\eta_{p}^{2}\) = 0.157.

  5. 5.

    Thank you to an anonymous reviewer for this suggestion.

  6. 6.

    This is not say that there is no inhibitory component of spatial attention. A number of studies have reported evidence of inhibitory mechanisms (Gaspelin, Leonard, & Luck, 2015; 2017; Gaspar & McDonald, 2014; Sawaki & Luck, 2010). Our argument, however, is that these inhibitory mechanisms are not, at least within the given task, capable of being used intentionally. That is, the observers could not voluntarily inhibit an areas of space in advance of to-be-attended stimuli.

References

  1. Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templataes for rejection: Configuring attention to ignore task-irrelevant features. Journal of Experimental Psychology: Human Perception and Performance, 38, 580–584.

    PubMed  Google Scholar 

  2. Asgeirsson, A. G., Kristjánsson, A., & Bundesen, C. (2014). Independent priming of location and color in identification of briefly presented letters. Attention, Perception & Psychophysics, 76, 40–48.

    Article  Google Scholar 

  3. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beck, V. M., & Hollingworth, A. (2015). Evidence for negative feature guidance in visual search is explained by spatial recoding. Journal of Experimental Psychology: Human Perception and Performance, 41, 1190–1196.

    PubMed  Google Scholar 

  5. Becker, S. I. (2007). Irrelevant singletons in pop-out search: Attentional capture or filtering costs? Journal of Experimental Psychology: Human Perception and Performance, 33, 764–787.

    PubMed  Google Scholar 

  6. Becker, M. W., Hemsteger, S., & Peltier, C. (2016). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 6285, 1–18.

    Google Scholar 

  7. Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention, Perception, & Psychophysics, 72, 326–341.

    Article  Google Scholar 

  8. Belopolsky, A. V., & Theeuwes, J. (2010). No capture outside the attentional window. Vision Research, 50, 2543–2550.

    Article  PubMed  Google Scholar 

  9. Belopolsky, A. V., Zwaan, L., Theeuwes, J., & Kramer, A. F. (2007). The size of an attentional window modulates attentional capture by color singletons. Psychonomic Bulletin & Review, 14, 934–938.

    Article  Google Scholar 

  10. Bundesen, C., Vangkilde, S., & Petersen, A. (2015). Recent developments in a computational theory of visual attention (TVA). Vision Research, 116, 210–218.

    Article  PubMed  Google Scholar 

  11. Cave, K. R. (1999). The FeatureGate model of visual selection. Psychological Research, 62, 182–194.

    Article  PubMed  Google Scholar 

  12. Cepeda, N. J., Cave, K. R., Bichot, N. P., & Kim, M. S. (1998). Spatial selection via feature-driven inhibition of distractor locations. Perception & Psychophysics, 60, 727–746.

    Article  Google Scholar 

  13. Chao, H.-F. (2010). Top-down attentional control for distractor locations: The benefit of precuing distractor locations on target localization and discrimination. Journal of Experimental Psychology: Human Perception and Performance, 36, 303–316.

    PubMed  Google Scholar 

  14. Chelazzi, L., Miller, E. K., Duncan, J., & Desiomne, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 339–342.

    Article  Google Scholar 

  15. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.

    Article  PubMed  Google Scholar 

  16. Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 16, 17–30.

    Article  Google Scholar 

  17. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in quantitative methods for psychology, 1, 42–45.

    Article  Google Scholar 

  18. Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8, 343–350.

    Article  Google Scholar 

  19. Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12, 374–380.

    Article  PubMed  Google Scholar 

  20. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, & Psychophysics, 16, 143–149.

    Article  Google Scholar 

  21. Erskine, J. A., Georgiou, G. J., & Kvavilashvili, L. (2010). I suppress, therefore I smoke: Effects of thought suppression on smoking behavior. Psychological Science, 21, 1225–1230.

    Article  PubMed  Google Scholar 

  22. Gaspar, J. M., & McDonald, J. J. (2014). Suppression of salient objects prevents distraction in visual search. Journal of Neuroscience, 34, 5658–5666.

    Article  PubMed  Google Scholar 

  23. Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26, 1740–1750.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79, 45–62.

    Article  Google Scholar 

  25. Geyer, T., Zehetleitner, M., & Müller, H. J. (2010). Positional priming of pop-out: A relational-encoding account. Journal of Vision, 10, 1–17.

    Article  PubMed  Google Scholar 

  26. Gibson, B. S., & Bryant, T. A. (2008). The identity intrusion effect: Attentional capture or perceptual load? Visual Cognition, 16, 182–199.

    Article  Google Scholar 

  27. Gokce, A., Müller, H. J., & Geyer, T. (2015). Positional priming of visual pop-out search is supported by multiple spatial reference frames. Frontiers in psychology, 6, 1–13.

    Article  Google Scholar 

  28. Grafton, S. T., Hazeltine, E., & Ivry, R. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510.

    Article  PubMed  Google Scholar 

  29. Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19, 304–313.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hillstrom, A. P. (2000). Repetition effects in visual search. Perception & Psychophysics, 62, 800–817.

    Article  Google Scholar 

  31. Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12, 360–365.

    Article  PubMed  Google Scholar 

  32. Jiang, Y., & Wagner, L. C. (2004). What is learned in spatial contextual cuing—configuration or individual locations? Attention, Perception, & Psychophysics, 66, 454–463.

    Article  Google Scholar 

  33. Jollie, A., Ivanoff, J., Webb, N. E., & Jamieson, A. S. (2016). Expect the unexpected: A paradoxical effect of cue validity on the orienting of attention. Attention, Perception, & Psychophysics, 78, 2124–2134.

    Article  Google Scholar 

  34. Klein, R. M., & Hilchey, M. D. (2011). Oculomotor inhibition of return. In S. Liversedge, I. D. Gilchrist, & S. Everling (Eds.), The Oxford handbook of eye movements (pp. 471– 492). Oxford, UK: Oxford University Press.

    Google Scholar 

  35. Kleiner, M., Brainard, D., Pelli, D. (2007). “What’s new in Psychtoolbox-3?” Perception 36 ECVP Abstract Supplement.

  36. Lahav, A., Makovski, T., & Tsal, Y. (2012). White bear everywhere: Exploring the boundaries of the attentional white bear phenomenon. Attention, Perception, & Psychophysics, 74, 661–673.

    Article  Google Scholar 

  37. Lamy, D., Tsal, Y., & Egeth, H. E. (2003). Does a salient distractor capture attention early in processing? Psychonomic Bulletin & Review, 10, 621–629.

    Article  Google Scholar 

  38. Leber, A. B., & Egeth, H. E. (2006). It’s under control: Top-down search strategies can override attentional capture. Psychonomic Bulletin & Review, 13, 132–138.

    Article  Google Scholar 

  39. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977–991.

    Article  Google Scholar 

  40. Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention, Perception, & Psychophysics, 74, 1590–1605.

    Article  Google Scholar 

  41. Munneke, J., Van der Stigchel, S., & Theeuwes, J. (2008). Cueing the location of a distractor: An inhibitory mechanism of spatial attention? Acta Psychologica, 129, 101–107.

    Article  PubMed  Google Scholar 

  42. Pfister, R., & Janczyk, M. (2013). Confidence intervals for two sample means: Calculation, interpretation, and a few simple rules. Advances in Cognitive Psychology, 9, 74–80.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rabbitt, P., Cumming, G., & Vyas, S. (1979). Modulation of selective attention by sequential effects in visual search tasks. The Quarterly Journal of Experimental Psychology, 31, 305–317.

    Article  PubMed  Google Scholar 

  44. Rajsic, J., Wilson, D. E., & Pratt, J. (2015). Confirmation bias in visual search. Journal of Experimental Psychology: Human Perception and Performance, 41, 1353–1364.

    PubMed  Google Scholar 

  45. Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72, 1455–1470.

    Article  Google Scholar 

  46. Serences, J. T., Yantis, S., Culberson, A., & Awh, E. (2004). Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. Journal of Neurophysiology, 92, 3538–3545.

    Article  PubMed  Google Scholar 

  47. Shore, D. I., Spence, C., & Klein, R. M. (2001). Visual prior entry. Psychological Science, 12, 360–366.

    Article  Google Scholar 

  48. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606.

    Article  Google Scholar 

  49. Theeuwes, J., & Burger, R. (1998). Attentional control during visual search: The effect of irrelevant singletons. Journal of Experimental Psychology: Human Perception and Performance, 24, 1342.

    PubMed  Google Scholar 

  50. Theeuwes, J., de Vries, G., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65, 735–746.

    Article  Google Scholar 

  51. Tsal, Y., & Makovski, T. (2006). The attentional white bear phenomenon: The mandatory allocation of attention to expected distractor locations. Journal of Experimental Psychology: Human Perception and Performance, 32, 351–363.

    PubMed  Google Scholar 

  52. Van der Stigchel, S., & Theeuwes, J. (2006). Our eyes deviate away from a location where a distractor is expected to appear. Experimental Brain Research, 169, 338–349.

    Article  PubMed  Google Scholar 

  53. Wegner, D. M. (2009). How to think, say, or do precisely the worst thing for any occasion. Science, 325, 48–50.

    Article  PubMed  Google Scholar 

  54. Wegner, D. M., Ansfield, M., & Pilloff, D. (1998). The putt and the pendulum: Ironic effects of the mental control of action. Psychological Science, 9, 196–199.

    Article  Google Scholar 

  55. Wegner, D. M., & Erber, R. (1992). The hyperaccessibility of suppressed thoughts. Journal of Personality and Social Psychology, 63, 903–912.

    Article  Google Scholar 

  56. Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16, 121.

    PubMed  Google Scholar 

  57. Zelinsky, G. J. (2008). A Theory of Eye Movements during Target Acquisition. Psychological Review, 115, 787–835.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhao, J., Al-Aidroos, N., & Turk-Browne, N. B. (2013). Attention is spontaneously biased toward regularities. Psychological Science, 24, 667–677.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Greg Huffman.

Ethics declarations

Funding

This project was supported by the Natural Sciences and Engineering Research Council of Canada, in form of a discovery grant to Jay Pratt and a Postgraduate Scholarship-Doctoral to Jason Rajsic.

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

All participants provided informed consent before participating in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huffman, G., Rajsic, J. & Pratt, J. Ironic capture: top-down expectations exacerbate distraction in visual search. Psychological Research 83, 1070–1082 (2019). https://doi.org/10.1007/s00426-017-0917-z

Download citation