Skip to main content

The implicit learning of metrical and non-metrical rhythms in blind and sighted adults

Abstract

Forming temporal expectancies plays a crucial role in our survival as it allows us to identify the occurrence of temporal deviants that might signal potential dangers. The dynamic attending theory suggests that temporal expectancies are formed more readily for rhythms that imply a beat (i.e., metrical rhythms) compared to those that do not (i.e., nonmetrical rhythms). Moreover, metrical frameworks can be used to detect temporal deviants. Although several studies have demonstrated that congenital or early blindness correlates with modality-specific neural changes that reflect compensatory mechanisms, few have examined whether blind individuals show a learning advantage for auditory rhythms and whether learning can occur unintentionally and without awareness, that is, implicitly. We compared blind to sighted controls in their ability to implicitly learn metrical and nonmetrical auditory rhythms. We reasoned that the loss of sight in blindness might lead to improved sensitivity to rhythms and predicted that the blind learn rhythms more readily than the sighted. We further hypothesized that metrical rhythms are learned more readily than nonmetrical rhythms. Results partially confirmed our predictions; the blind group learned nonmetrical rhythms more readily than the sighted group but the blind group learned metrical rhythms less readily than the sighted group. Only the sighted group learned metrical rhythms more readily than nonmetrical rhythms. The blind group demonstrated awareness of the nonmetrical rhythms while learning was implicit for all other conditions. Findings suggest that improved deviant-sensitivity might have provided the blind group a learning advantage for nonmetrical rhythms. Future research could explore the plastic changes that affect deviance-detection and stimulus-specific adaptation in blindness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ayala, Y. A., & Malmierca, M. S. (2013). Stimulus-specific adaptation and deviance detection in the inferior colliculus. Frontiers in Neural Circuits, 6, 89.

    PubMed  PubMed Central  Google Scholar 

  2. Ayala, Y. A., Pérez-González, D., & Malmierca, M. S. (2016). Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs. Biological Psychology, 116, 10–22.

    Article  PubMed  Google Scholar 

  3. Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Baars, B. J. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53.

    Article  PubMed  Google Scholar 

  5. Baars, B. J., & Franklin, S. (2007). An architectural model of conscious and unconscious brain functions: Global workspace theory and IDA. Neural Networks, 20, 955–961.

    Article  PubMed  Google Scholar 

  6. Bargh, J. A., & Morsella, E. (2008). The unconscious mind. Perspectives on Psychological Science, 3, 73–79.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.

    Article  Google Scholar 

  8. Beaulieu-Lefebvre, M., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Odor perception and odor awareness in congenital blindness. Brain Research Bulletin, 84, 206–209.

    Article  PubMed  Google Scholar 

  9. Bell, E. C., & Mino, N. M. (2013). Blind and visually impaired adult rehabilitation and employment survey: Final results. Journal of Blindness Innovation & Research, 3, 1–35.

    Google Scholar 

  10. Boas, L. V., Muniz, L., Neto, S. D. S. C., & Gouveia, M. D. C. L. (2011). Auditory processing performance in blind people. Brazilian Journal of Otorhinolaryngology, 77, 504–509.

    Article  PubMed  Google Scholar 

  11. Burton, H., Agato, A., & Sinclair, R. J. (2012). Repetition learning of vibrotactile temporal sequences: An fMRI study in blind and sighted individuals. Brain Research, 1433, 69–79.

    Article  PubMed  Google Scholar 

  12. Byrne, R. W., & Salter, E. (1983). Distances and directions in the cognitive maps of the blind. Canadian Journal of Psychology/Revue canadienne de psychologie, 37, 293.

    Article  Google Scholar 

  13. Cacciaglia, R., Escera, C., Slabu, L., Grimm, S., Sanjuán, A., Ventura-Campos, N., & Ávila, C. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 51–58.

    Article  PubMed  Google Scholar 

  14. Carrara-Augustenborg C. (2013). From objective informational broadcast to subjective perceptual awareness: The development of a comprehensive model of human consciousness. Ph.D Dissertation ISBN 978-87-7611-591-3.

  15. Carrara-Augustenborg, C., & Pereira, A., Jr. (2012). Brain endogenous feedback and degrees of consciousness. In A. E. Cavanna & A. Novi (Eds.), Consciousness: States, mechanisms and disorders. Hauppauge: Nova Science.

    Google Scholar 

  16. Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 1003–1011.

    Article  PubMed  Google Scholar 

  17. Cohen, J., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope. Behavior Research Methods, Instruments, & Computers, 25, 257–271.

    Article  Google Scholar 

  18. Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343.

    Article  PubMed  Google Scholar 

  19. Cornella, M., Leung, S., Grimm, S., & Escera, C. (2012). Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One, 7, e43604.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329, 47–50.

    Article  PubMed  Google Scholar 

  21. Denison, R. N., Sheynin, J., & Silver, M. A. (2016). Perceptual suppression of predicted natural images. Journal of Vision, 16, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Di Luca, M., Ernst, M. O., & Backus, B. T. (2010). Learning to use an invisible visual signal for perception. Current Biology, 20, 1860–1863. doi:10.1016/j.cub.2010.09.047.

    Article  PubMed  Google Scholar 

  23. Duque, D., Malmierca, M. S., & Caspary, D. M. (2014). Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. The Journal of physiology, 592, 729–743.

    Article  PubMed  Google Scholar 

  24. Duque, D., Pérez-González, D., Ayala, Y. A., Palmer, A. R., & Malmierca, M. S. (2012). Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. Journal of Neuroscience, 32, 17762–17774.

    Article  PubMed  Google Scholar 

  25. Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51, 111–123.

    Article  PubMed  Google Scholar 

  26. Essens, P. J., & Povel, D. J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37, 1–7.

    Article  Google Scholar 

  27. Fieger, A., Röder, B., Teder-Sälejärvi, W., Hillyard, S. A., & Neville, H. J. (2006). Auditory spatial tuning in late-onset blindness in humans. Journal of Cognitive Neuroscience, 18, 149–157.

    Article  PubMed  Google Scholar 

  28. Forster, S., & Lavie, N. (2009). Harnessing the wandering mind: The role of perceptual load. Cognition, 111, 345–355.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P. A., & Quilter, R. E. (1994). Age differences and changes in reaction time: The Baltimore longitudinal study of aging. Journal of Gerontology, 49, P179–P189.

    Article  PubMed  Google Scholar 

  30. Fu, Q., Dienes, Z., & Fu, X. (2010). Can unconscious knowledge allow control in sequence learning? Consciousness and Cognition, 19, 462–474.

    Article  PubMed  Google Scholar 

  31. Grossmann, T., & Friederici, A. D. (2012). When during development do our brains get tuned to the human voice? Social Neuroscience, 7, 369–372.

    Article  PubMed  Google Scholar 

  32. Guo, X., Jiang, S., Wang, H., Zhu, L., Tang, J., Dienes, Z., & Yang, Z. (2013). Unconsciously learning task-irrelevant perceptual sequences. Consciousness and Cognition, 22, 203–211.

    Article  PubMed  Google Scholar 

  33. Haber, L., Haber, R. N., Pennigroth, S., Novak, K., & Radgowski, H. (1993). Comparison of nine methods of indicating the direction of objects: Data from blind subjects. Perception, 22, 35–47.

    Article  PubMed  Google Scholar 

  34. Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. NeuroReport, 15, 803–806.

    Article  PubMed  Google Scholar 

  35. Hannon, E. E., & Trehub, S. E. (2005). Tuning into musical rhythms: Infants learn more readily than adults. Proceedings of the National academy of Sciences of the United States of America, 102, 12639–12643.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108, 687–701.

    Article  PubMed  Google Scholar 

  37. Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54, 276–280.

    Article  PubMed  Google Scholar 

  38. Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13, 499–505.

    Article  PubMed  Google Scholar 

  39. Horstmann, G. (2005). Attentional capture by an unannounced color singleton depends on expectation discrepancy. Journal of Experimental Psychology: Human Perception and Performance, 31, 1039.

    PubMed  Google Scholar 

  40. Horstmann, G. (2006). The time course of intended and unintended allocation of attention. Psychological Research, 70, 13–25.

    Article  PubMed  Google Scholar 

  41. Horstmann, G. (2015). The surprise–attention link: A review. Annals of the New York Academy of Sciences, 1339, 106–115.

    Article  PubMed  Google Scholar 

  42. Horstmann, G., & Becker, S. I. (2008). Attentional effects of negative faces: Top-down contingent or involuntary? Attention, Perception, & Psychophysics, 70, 1416–1434.

    Article  Google Scholar 

  43. Horstmann, G., & Herwig, A. (2016). Novelty biases attention and gaze in a surprise trial. Attention, Perception, & Psychophysics, 78, 69–77.

    Article  Google Scholar 

  44. Hunt, J. M., Smith, M. F., & Kernan, J. B. (1989). Processing effects of expectancy-discrepant persuasive messages. Psychological Reports, 65, 1359–1376.

    Article  Google Scholar 

  45. Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49, 1295–1306.

    Article  PubMed  Google Scholar 

  46. Jones, M. R. (2009). Musical time. In S. Hallam, I. Cross, & M. Thaut (Eds.), The handbook of music psychology (pp. 81–92). New York: Oxford University Press.

    Google Scholar 

  47. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.

    Article  PubMed  Google Scholar 

  48. Karabanov, A., & Ullén, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. Journal of Neurophysiology, 100, 733–739.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.

    Article  PubMed  Google Scholar 

  50. Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience and Biobehavioral Reviews, 41, 36–52.

    Article  PubMed  Google Scholar 

  51. Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119.

    Article  Google Scholar 

  52. LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437–446.

    Article  PubMed  Google Scholar 

  53. Lerdahl, F., & Jackendoff, R. (1981). On the theory of grouping and meter. The Musical Quarterly, 67, 479–506.

    Article  Google Scholar 

  54. Lerens, E., Araneda, R., Renier, L., & De Volder, A. G. (2014). Improved beat asynchrony detection in early blind individuals. Perception, 43, 1083–1096.

    Article  PubMed  Google Scholar 

  55. Malmierca, M. S., Sanchez-Vives, M. V., Escera, C., & Bendixen, A. (2014). Neuronal adaptation, novelty detection and regularity encoding in audition. Frontiers in Systems Neuroscience, 8, 111.

    PubMed  PubMed Central  Google Scholar 

  56. Meeter, M., Myers, C. E., & Gluck, M. A. (2005). Integrating incremental learning and episodic memory models of the hippocampal region. Psychological Review, 112, 560.

    Article  PubMed  Google Scholar 

  57. Mills, P. F., van der Steen, M. M., Schultz, B. G., & Keller, P. E. (2015). Individual differences in temporal anticipation and adaptation during sensorimotor synchronization. Timing & Time Perception, 3, 13–31.

    Article  Google Scholar 

  58. Morey, R. D., Rouder, J. N., & Jamil, T. (2009). BayesFactor: an R package for Bayesian data analysis. R package version 09.10-2. Retrieved from http://bayesfactorpcl.r-forge.r-project.org/rouder. Accessed 21 Apr 2017.

  59. Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.

    Article  PubMed  Google Scholar 

  60. Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88, 109–123.

    Article  PubMed  Google Scholar 

  61. Parmentier, F. B. P. (2008). Towards a cognitive model of distraction by auditory novelty: The role of involuntary attention capture and semantic processing. Cognition, 109, 345–362.

    Article  PubMed  Google Scholar 

  62. Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception: An Interdisciplinary Journal, 11, 409–464.

    Article  Google Scholar 

  63. Pascual-Leone, A. (1996). Reorganization of cortical motor outputs in the acquisition of new motor skills. In J. Kinura & H. Shibasaki (Eds.), Recent advances in clinical neurophysiology (pp. 304–308). Amsterdam: Elsevier Science.

    Google Scholar 

  64. Pascual-Leone, A., Cohen, L. G., Brasil-Neto, J. P., Valls-Solé, J., & Hallett, M. (1994). Differentiation of sensorimotor neuronal structures responsible for induction of motor evoked potentials, attenuation in detection of somatosensory stimuli, and induction of sensation of movement by mapping of optimal current directions. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93, 230–236.

    Article  Google Scholar 

  65. Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.

    Article  PubMed  Google Scholar 

  66. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press, ISBN13: 978-0-19-512375-3, ISBN10: 0-19-512375-1.

  67. Patel, C. R., Redhead, C., Cervi, A. L., & Zhang, H. (2012). Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hearing Research, 286, 41–54.

    Article  PubMed  Google Scholar 

  68. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2015). nlme: linear and nonlinear mixed effects models. R package version 3.1-120. Retrieved from http://CRAN.R-project.org/package=nlme. Accessed 21 Apr 2017.

  69. Ponnath, A., Hoke, K. L., & Farris, H. E. (2013). Stimulus change detection in phasic auditory units in the frog midbrain: Frequency and ear specific adaptation. Journal of Comparative Physiology A, 199, 295–313.

    Article  Google Scholar 

  70. Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception: An Interdisciplinary Journal, 2, 411–440.

    Article  Google Scholar 

  71. Ptito, M., & Kupers, R. (2005). Cross-modal plasticity in early blindness. Journal of Integrative Neuroscience, 4, 479–488.

    Article  PubMed  Google Scholar 

  72. R Core Team. (2013). R: a language and environment for statistical computing (version 3.4.0). R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/. Accessed 21 Apr 2017.

  73. Ranjbar, P., & Stenström, I. (2013). Monitor, a vibrotactile aid for environmental perception: a field evaluation by four people with severe hearing and vision impairment. The Scientific World Journal, 2013, 1–11.

    Google Scholar 

  74. Renier, L., De Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehavioral Reviews, 41, 53–63.

    Article  PubMed  Google Scholar 

  75. Röder, B., Krämer, U. M., & Lange, K. (2007). Congenitally blind humans use different stimulus selection strategies in hearing: An ERP study of spatial and temporal attention. Restorative Neurology & Neuroscience, 25, 311–322.

    Google Scholar 

  76. Röder, B., Rösler, F., & Neville, H. J. (1999a). Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neuroscience Letters, 264, 53–56.

    Article  PubMed  Google Scholar 

  77. Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121–124.

    Article  PubMed  Google Scholar 

  78. Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. (1999b). Improved auditory spatial tuning in blind humans. Nature, 400, 162–166.

    Article  PubMed  Google Scholar 

  79. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 752–760.

    Article  Google Scholar 

  80. Schall, U., Johnston, P., Todd, J., Ward, P. B., & Michie, P. T. (2003). Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs. Neuroimage, 20, 729–736.

    Article  PubMed  Google Scholar 

  81. Schmack, K., Gomez-Carrillo de Castro, A., Rothkirch, M., Sekutowicz, M., Rössler, H., Haynes, J. D., & Sterzer, P. (2013). Delusions and the role of beliefs in perceptual inference. Journal of Neuroscience, 33, 13701–13712.

    Article  PubMed  Google Scholar 

  82. Schomaker, J., & Meeter, M. (2014). Novelty detection is enhanced when attention is otherwise engaged: An event-related potential study. Experimental Brain Research, 232, 995–1011.

    Article  PubMed  Google Scholar 

  83. Schomaker, J., Roos, R., & Meeter, M. (2014). Expecting the unexpected: The effects of deviance on novelty processing. Behavioral Neuroscience, 128, 146.

    Article  PubMed  Google Scholar 

  84. Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013a). The implicit learning of metrical and nonmetrical temporal patterns. The Quarterly Journal of Experimental Psychology, 66, 360–380.

    Article  PubMed  Google Scholar 

  85. Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013b). A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns. PLoS One, 8, e75163.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Seriés, P., & Seitz, A. R. (2013). Learning what to expect (in visual perception). Frontiers in Human Neuroscience, 7, 668.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shanks, D. R. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage.

    Google Scholar 

  88. Slimani, H., Danti, S., Ricciardi, E., Pietrini, P., Ptito, M., & Kupers, R. (2013). Hypersensitivity to pain in congenital blindness. Pain, 154, 1973–1978.

    Article  PubMed  Google Scholar 

  89. Stevens, A. A., & Weaver, K. (2005). Auditory perceptual consolidation in early-onset blindness. Neuropsychologia, 43, 1901–1910.

    Article  PubMed  Google Scholar 

  90. Taaseh, N., Yaron, A., & Nelken, I. (2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One, 6, e23369.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.

    Article  PubMed  Google Scholar 

  92. Van der Lubbe, R. H., Van Mierlo, C. M., & Postma, A. (2010). The involvement of occipital cortex in the early blind in auditory and tactile duration discrimination tasks. Journal of Cognitive Neuroscience, 22, 1541–1556.

    Article  PubMed  Google Scholar 

  93. Von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.

    Article  Google Scholar 

  94. Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48, 344–348.

    Article  PubMed  Google Scholar 

  95. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modelling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.

    Article  PubMed  Google Scholar 

  96. Zhao, L., Liu, Y., Shen, L., Feng, L., & Hong, B. (2011). Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience, 181, 163–174.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The first author (CCA) was supported by the Danish Council for Independent Research (DFF-4089-00178). CCA thanks Prof. Maurice Ptito for his useful suggestions on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claudia Carrara-Augustenborg.

Ethics declarations

Conflict of interest

The authors declare that no potential conflicts of interest pertain to this submission.

Human and animal rights statement

The present study did not involve non-human animals. The procedures performed in this study involving human participants were in accordance with the ethical standards of the Danish national research committee and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Informed consent was signed by all participants prior to the experiments. The manuscript does not contain clinical studies or patient data.

Appendix: Analyses of individual differences

Appendix: Analyses of individual differences

Analyses of covariance

An analysis of covariance (ANCOVA) was performed for each dependent variable with covariates age, years of musical training, and years of education to examine whether the effects found in the linear mixed-effects models could be explained by individual differences. For the learning score, none of the individual differences yielded significant effects (ps > 0.47; see Fig. 6). In line with the LMEM, there were no main effects of vision or meter (ps > 0.41), and the interaction between vision and meter was significant [F(1, 34) = 11.14, p = 0.003, \(\eta_{\text{p}}^{2}\) = 0.33]. This interaction indicated that the sighted had larger learning scores for the metrical condition than the nonmetrical condition (p = 0.009), the sighted had larger learning scores than the blind in the metrical condition (p = 0.012), and there remained a trend for larger learning scores for the blind group in the nonmetrical condition compared to the metrical condition (p = 0.08). As shown in Fig. 6, these trends persist despite musical training and age. However, the present study cannot discount education level as a possible confound as all participants (but one) in the blind group had only received secondary education. Education did not appear to moderate the differences between metrical and nonmetrical conditions in the sighted group but the present study does not have the statistical power to test such individual differences.

Fig. 6
figure6

Learning score means separated by musical training (a), age group (b; older, younger; median split of 36 years), and education (c; higher, secondary; split from 12 years). Error bars represent standard error of the mean

To ascertain whether implicit learning could be explained by individual differences, a repeated-measures ANCOVA was conducted on the dependent variable similarity score with instruction (inclusion, exclusion) as a within-subjects variable and meter (metrical, nonmetrical) and vision (sighted, blind) as between-subjects variables. Results demonstrated significant effects of age (p = 0.01), years of music training (p < 0.001), and years of education (p < 0.001) on similarity scores. Despite these effects, there remained a significant interaction between instruction, vision, and meter (p = 0.02). Planned comparisons between inclusion and exclusion instructions for each condition revealed that similarity scores in the inclusion instruction were only higher than those in the exclusion instruction for the blind group in the metrical condition (p = 0.04), but no other conditions (ps > 0.99).

Correlations

Correlations were performed between our measures of individual differences (years of musical training, years of education, and years of age) and dependent variables (learning score, response time increases for test rhythm A and test rhythm B, and the difference between inclusion and exclusion similarity scores, that is, the implicit scores). None of the correlations reached significance (ps > 0.136). Pearson correlation coefficients are reported in the scatterplots in Fig. 7.

Fig. 7
figure7

Correlations for sighted (blue) and blind (grey) groups in metrical (circles) and nonmetrical (triangles) conditions between learning scores (top row), RT increases in tests A (second row) and B (third row), and similarity scores (bottom row), and individual difference measures of years of musical training (left column), years of education (middle column), and years of age (right column)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carrara-Augustenborg, C., Schultz, B.G. The implicit learning of metrical and non-metrical rhythms in blind and sighted adults. Psychological Research 83, 907–923 (2019). https://doi.org/10.1007/s00426-017-0916-0

Download citation