Are allocentric spatial reference frames compatible with theories of Enactivism?

  • Sabine U. KönigEmail author
  • Caspar Goeke
  • Tobias Meilinger
  • Peter König
Original Article


Theories of Enactivism propose an action-oriented approach to understand human cognition. So far, however, empirical evidence supporting these theories has been sparse. Here, we investigate whether spatial navigation based on allocentric reference frames that are independent of the observer’s physical body can be understood within an action-oriented approach. Therefore, we performed three experiments testing the knowledge of the absolute orientation of houses and streets towards north, the relative orientation of two houses and two streets, respectively, and the location of houses towards each other in a pointing task. Our results demonstrate that under time pressure, the relative orientation of two houses can be retrieved more accurately than the absolute orientation of single houses. With infinite time for cognitive reasoning, the performance of the task using house stimuli increased greatly for the absolute orientation and surpassed the slightly improved performance in the relative orientation task. In contrast, with streets as stimuli participants performed under time pressure better in the absolute orientation task. Overall, pointing from one house to another house yielded the best performance. This suggests, first, that orientation and location information about houses are primarily coded in house-to-house relations, whereas cardinal information is deduced via cognitive reasoning. Second, orientation information for streets is preferentially coded in absolute orientations. Thus, our results suggest that spatial information about house and street orientation is coded differently and that house orientation and location is primarily learned in an action-oriented way, which is in line with an enactive framework for human cognition.



Most of all, we would like to thank all the people who helped with recording and preparing the stimuli. Especially, we thank Antonia Kaiser and Annete Aumeistere, who helped a lot with the recordings.

Author contribution statement

CG, SUK, and TM wrote the main manuscript. SUK wrote the revision of the manuscript and provided new figures and tables for the revised paper. PK, CG, and TM proofread and iteratively improved the revised manuscript. SUK and CG recorded the experimental data. CG implemented the study and analyzed the data. PK suggested the study design and procedures for analysis and supervised the study.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


This work was funded by the European Union’s Horizon 2020 program, H2020-FETPROACT-2014, SEP: 210141273, ID: 641321 socSMCs.

Human and animal rights statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional and National Research Committees.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Bonner, M. F., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1618228114.Google Scholar
  2. Burgess, N. (2006). Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. doi: 10.1016/j.tics.2006.10.005.CrossRefPubMedGoogle Scholar
  3. Burte, H., & Hegarty, M. (2012). Revisiting the Relationship between Allocentric-Heading Recall and Self-Reported Sense of Direction. In Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 162–167).Google Scholar
  4. Burte, H., & Hegarty, M. (2014). Allignment effects and allocentric-headings within a relative heading task. Spatial Cognition IX. Spatial Cognition, 2014, 8684. doi: 10.1007/978-3-319-11215-2_4.Google Scholar
  5. Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review, 114, 340–375.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chrastil, E. R., & Warren, W. H. (2014). From cognitive maps to cognitive graphs. PLoS One. doi: 10.1371/journal.pone.0112544.PubMedPubMedCentralGoogle Scholar
  7. Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependance in scene recognition. Psychological Science, 8(4), 302–307. doi: 10.1111/j.1467-9280.1997.tb00442.x.CrossRefGoogle Scholar
  8. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in cognitive sciences, 17(5), 202–209. doi: 10.1016/j.tics.2013.03.006.CrossRefPubMedGoogle Scholar
  9. Frankenstein, J., Mohler, B. J., Bülthoff, H. H., & Meilinger, T. (2012). Is the map in our head oriented north? Psychological Science, 23(2), 120–125. doi: 10.1177/0956797611429467.CrossRefPubMedGoogle Scholar
  10. Gibson, J. J. (1977). Perceiving (pp. 67–82). Acting and Knowing: Toward an ecological psychology. the theory of affordances.Google Scholar
  11. Gibson, J. J. (1979). The Theory of Affordances. In The Ecological Approach to Visual Perception (pp. 127–143).Google Scholar
  12. Goeke, C. M., König, P., & Gramann, K. (2013). Different strategies for spatial updating in yaw and pitch path integration. Frontiers in behavioral neuroscience, 7, 5. doi: 10.3389/fnbeh.2013.00005.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goeke, C. M., Kornpetpanee, S., Köster, M., Fernández-Revelles, A. B., Gramann, K., & König, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific reports. doi: 10.1038/srep11426.PubMedPubMedCentralGoogle Scholar
  14. Gramann, K. (2013). Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spatial Cognition and Computation, 13(1), 1–25. doi: 10.1080/13875868.2011.589038.CrossRefGoogle Scholar
  15. Greenauer, N., & Waller, D. (2008). Intrinsic array structure is neither necessary nor sufficient for nonegocentric coding of spatial layouts. Psychonomic Bulletin & Review, 15(5), 1015–1021. doi: 10.3758/PBR.15.5.1015.CrossRefGoogle Scholar
  16. Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cognitive Psychology, 58, 137–176. doi: 10.1016/j.cogpsych.2008.06.001.CrossRefPubMedGoogle Scholar
  17. Haith, M. M., & Benson, J. B. A. (1998). Infant Cognition. In D. Kuhn & R. Siegler (Eds.), Handbook of child psychology (5th edition) volume 2: Cognition, perception, and language. Hoboken: Wiley.Google Scholar
  18. Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi: 10.1016/j.cogpsych.2005.08.003.CrossRefPubMedGoogle Scholar
  19. Kaspar, K., König, S., Schwandt, J., & König, P. (2014). The experience of new sensorimotor contingencies by sensory augmentation. Consciousness and Cognition, 28, 47–63. doi: 10.1016/j.concog.2014.06.006.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kelly, J. W., Avraamides, M. N., & Loomis, J. M. (2007). Sensorimotor alignment effects in the learning environment and in novel environments. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(6), 1092–1107. doi: 10.1037/0278-7393.33.6.1092.CrossRefPubMedGoogle Scholar
  21. Kelly, J. W., & McNamara, T. P. (2008). Spatial memories of virtual environments: How egocentric experience, intrinsic structure, and extrinsic structure interact. Psychonomic Bulletin & Review, 15, 322–327.CrossRefGoogle Scholar
  22. Klatzky, R. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In Spatial cognition - An interdisciplinary approach to representation and processing of spatial knowledge (pp. 1–17). doi: 10.1007/3-540-69342-4 (September 1997).
  23. König, S. U., Schumann, F., Keyser, J., Goeke, C., Krause, C., Wache, S., et al. (2016). Learning new sensorimotor contingencies: effects of long-term use of sensory augmentation on the brain and conscious perception. Plos One, 11, 1–35. doi: 10.1371/journal.pone.0166647.CrossRefGoogle Scholar
  24. Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: assessment of path integration ability. Journal of Experimental Psychology: General, 122(1), 73–91. doi: 10.1037/0096-3445.122.1.73.CrossRefGoogle Scholar
  25. Mallot, H. A., & Basten, K. (2009). Embodied spatial cognition: biological and artificial systems. Image and Vision Computing, 27(11), 1658–1670. doi: 10.1016/j.imavis.2008.09.001.CrossRefGoogle Scholar
  26. Masters, M. S., & Sanders, B. (1993). Is the gender difference in mental rotation disappearing? Behavior Genetics, 23(4), 337–341. doi: 10.1007/BF01067434.CrossRefPubMedGoogle Scholar
  27. Maye, A., & Engel, A. K. (2011). A discrete computational model of sensorimotor contingencies for object perception and control of behavior. IEEE International Conference on Robotics and Automation. doi: 10.1109/ICRA.2011.5979919.Google Scholar
  28. Maye, A., & Engel, A. K. (2012). Time scales of sensorimotor contingencies. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (vol. 7366 LNAI, pp. 240–249). doi: 10.1007/978-3-642-31561-9_27.
  29. Maye, A., & Engel, A. K. (2013). Extending sensorimotor contingency theory: prediction, planning, and action generation. Adaptive Behavior, 21(6), 423–436. doi: 10.1177/1059712313497975.CrossRefGoogle Scholar
  30. McNamara, T. P. (2002). How are the Locations of Objects in the Environment Represented in Memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial Cognition III: Routes and Navigation, Human Memory and Learning, Spatial Representation and Spatial Learning (pp. 174–191). Berlin: Springer. doi: 10.1007/3-540-45004-1_11.
  31. McNamara, T. P., Rump, B., & Werner, S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review, 10(3), 589–595. doi: 10.3758/BF03196519.CrossRefGoogle Scholar
  32. McNamara, T. P., Sluzenski, J., & Rump, B. (2008). 2.11-Human Spatial Memory and Navigation. doi: 10.1016/b078-012370509-9.00176-5.
  33. Meilinger, T. (2008a). The network of reference frames theory: a synthesis of graphs and cognitive maps. In Spatial Cognition VI. Learning, Reasoning, and Talking (pp. 344–360).
  34. Meilinger, T. (2008b). Strategies of orientation in environmental spaces. biological cybernetics. Tübingen: MPI for Biological Cybernetics.Google Scholar
  35. Meilinger, T., Frankenstein, J., & Bülthoff, H. H. (2013). Learning to navigate: experience versus maps. Cognition, 129(1), 24–30. doi: 10.1016/j.cognition.2013.05.013.CrossRefPubMedGoogle Scholar
  36. Meilinger, T., Frankenstein, J., Watanabe, K., Bülthoff, H. H., & Hölscher, C. (2015). Reference frames in learning from maps and navigation. Psychological Research, 79(6), 1000–1008. doi: 10.1007/s00426-014-0629-6.CrossRefPubMedGoogle Scholar
  37. Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. Quarterly journal of experimental psychology (2006), 67(3), 1–28. doi: 10.1080/17470218.2013.821145.
  38. Meilinger, T., Strickrodt, M., & Bülthoff, H. H. (2016). Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition, 155, 77–95. doi: 10.1016/j.cognition.2016.06.003.CrossRefPubMedGoogle Scholar
  39. Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “Virtual” maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(519), 73–87. doi: 10.1016/S1090-5138(97)00104-9.CrossRefGoogle Scholar
  40. Montello, D. R. (1993). Scale and multiple psychologies of space. Spatial Information Theory A Theoretical Basis for GIS. doi: 10.1007/3-540-57207-4_21.Google Scholar
  41. Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(1), 162–170. doi: 10.1037/0278-7393.28.1.162.CrossRefPubMedGoogle Scholar
  42. Mou, W., McNamara, T. P., Rump, B., & Xiao, C. (2006). Roles of egocentric and allocentric spatial representations in locomotion and reorientation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(6), 1274–1290. doi: 10.1037/0278-7393.32.6.1274.CrossRefPubMedGoogle Scholar
  43. Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 142–157. doi: 10.1037/0278-7393.30.1.142.CrossRefPubMedGoogle Scholar
  44. Nardini, M., Burgess, N., Breckenridge, K., & Atkinson, J. (2006). Differential developmental trajectories for egocentric, environmental and intrinsic frames of reference in spatial memory. Cognition, 101(1), 153–172. doi: 10.1016/j.cognition.2005.09.005.CrossRefPubMedGoogle Scholar
  45. Newhouse, P., Newhouse, C., & Astur, R. S. (2007). Sex differences in visual-spatial learning using a virtual water maze in pre-pubertal children. Behavioural Brain Research, 183(1), 1–7.CrossRefPubMedGoogle Scholar
  46. Noë, A. (2004). Action in perception. Cambridge: MIT Press.Google Scholar
  47. O’Keefe, J. (1991). An allocentric spatial model for the Hippocampal cognitive map. Hippocampus, 1, 230–235.CrossRefPubMedGoogle Scholar
  48. O’Regan, J. K. (2011). Why red doesn’t sound like a bell: Understanding the feel of consciousness. New York: Oxford University Press.CrossRefGoogle Scholar
  49. O’Regan, J. K., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–1031. doi: 10.1017/S0140525X01000115.CrossRefPubMedGoogle Scholar
  50. Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York: FJ Langdon & JL Lunzer, Trans.Google Scholar
  51. Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100, 163–182.CrossRefPubMedGoogle Scholar
  52. Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. doi: 10.3758/BF03211566.CrossRefGoogle Scholar
  53. Riecke, B. E., Cunningham, D. W., & Bülthoff, H. H. (2007). Spatial updating in virtual reality: The sufficiency of visual information. Psychological Research. doi: 10.1007/s00426-006-0085-z.PubMedGoogle Scholar
  54. Sargent, J., Dopkins, S., Philbeck, J., & Modarres, R. (2008). Spatial memory during progressive disorientation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(3), 602.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin & Review, 4(1), 102–106.CrossRefGoogle Scholar
  56. Sholl, M. J. (1987). Cognitive maps as orienting schemata. Journal of Experimental Psychology, 13(4), 615.PubMedGoogle Scholar
  57. Sholl, M. J. (2008). Human allocentric heading orientation and ability. Current Directions in Psychological Science, 17(4), 275–280. doi: 10.1111/j.1467-8721.2008.00589.x.CrossRefGoogle Scholar
  58. Sholl, M. J., Kenny, R. J., & DellaPorta, K. A. (2006). Allocentric-heading recall and its relation to self-reported sense-of-direction. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(3), 516.CrossRefPubMedGoogle Scholar
  59. Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large scale environments. Adv. Child Develop. Behav., 10, 9–55.CrossRefGoogle Scholar
  60. Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9, 315–320. doi: 10.1111/1467-9280.00062.CrossRefGoogle Scholar
  61. Street, W. N., & Wang, R. F. (2014). Differentiating spatial memory from spatial transformations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40, 602–608. doi: 10.1037/a0035279.CrossRefPubMedGoogle Scholar
  62. Sun, H.-J., Chan, G. S. W., & Campos, J. L. (2004). Active navigation and orientation-free spatial representations. Memory & Cognition, 32(1), 51–71. doi: 10.3758/BF03195820.CrossRefGoogle Scholar
  63. Trullier, O., Wiener, S. I., Berthoz, A., & Meyer, J. A. (1997). Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51, 483–544.CrossRefPubMedGoogle Scholar
  64. Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846. doi: 10.1037/0096-1523.24.3.830.PubMedGoogle Scholar
  65. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. An International Journal of Complexity and, 1992, 328. doi: 10.1111/j.1468-0149.1965.tb01386.x.Google Scholar
  66. Waller, D., & Hodgson, E. (2006). Transient and enduring spatial representations under disorientation and self-rotation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(4), 867–882. doi: 10.1016/j.micinf.2011.07.011.Innate.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215–250. doi: 10.1016/S0010-0277(00)00105-0.CrossRefPubMedGoogle Scholar
  68. Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: insights from animals. Trends in Cognitive Sciences, 6(9), 376–382.CrossRefPubMedGoogle Scholar
  69. Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cognition & Computation, 9(2), 152–165. doi: 10.1080/13875860902906496.CrossRefGoogle Scholar
  70. Wilson, M. (2002). Six views of embodied cognition. Psychonomic bulletin & review, 9(4), 625–36.
  71. Woolley, D. G., Vermaercke, B., de Beeck, H. O., Wagemans, J., Gantois, I., D’Hooge, R., et al. (2010). Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research, 208(2), 408–414.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sabine U. König
    • 1
    Email author
  • Caspar Goeke
    • 1
  • Tobias Meilinger
    • 2
  • Peter König
    • 1
    • 3
  1. 1.Institute of Cognitive ScienceUniversity of OsnabrückOsnabrückGermany
  2. 2.Max Planck Institute for Biological CyberneticsTübingenGermany
  3. 3.Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations