Skip to main content
Log in

Are allocentric spatial reference frames compatible with theories of Enactivism?

Psychological Research Aims and scope Submit manuscript

Abstract

Theories of Enactivism propose an action-oriented approach to understand human cognition. So far, however, empirical evidence supporting these theories has been sparse. Here, we investigate whether spatial navigation based on allocentric reference frames that are independent of the observer’s physical body can be understood within an action-oriented approach. Therefore, we performed three experiments testing the knowledge of the absolute orientation of houses and streets towards north, the relative orientation of two houses and two streets, respectively, and the location of houses towards each other in a pointing task. Our results demonstrate that under time pressure, the relative orientation of two houses can be retrieved more accurately than the absolute orientation of single houses. With infinite time for cognitive reasoning, the performance of the task using house stimuli increased greatly for the absolute orientation and surpassed the slightly improved performance in the relative orientation task. In contrast, with streets as stimuli participants performed under time pressure better in the absolute orientation task. Overall, pointing from one house to another house yielded the best performance. This suggests, first, that orientation and location information about houses are primarily coded in house-to-house relations, whereas cardinal information is deduced via cognitive reasoning. Second, orientation information for streets is preferentially coded in absolute orientations. Thus, our results suggest that spatial information about house and street orientation is coded differently and that house orientation and location is primarily learned in an action-oriented way, which is in line with an enactive framework for human cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Bonner, M. F., & Epstein, R. A. (2017). Coding of navigational affordances in the human visual system. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1618228114.

    Article  Google Scholar 

  • Burgess, N. (2006). Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. doi:10.1016/j.tics.2006.10.005.

    Article  PubMed  Google Scholar 

  • Burte, H., & Hegarty, M. (2012). Revisiting the Relationship between Allocentric-Heading Recall and Self-Reported Sense of Direction. In Proceedings of the 34th Annual Conference of the Cognitive Science Society (pp. 162–167).

  • Burte, H., & Hegarty, M. (2014). Allignment effects and allocentric-headings within a relative heading task. Spatial Cognition IX. Spatial Cognition, 2014, 8684. doi:10.1007/978-3-319-11215-2_4.

    Article  Google Scholar 

  • Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review, 114, 340–375.

    Article  Google Scholar 

  • Chrastil, E. R., & Warren, W. H. (2014). From cognitive maps to cognitive graphs. PLoS One. doi:10.1371/journal.pone.0112544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependance in scene recognition. Psychological Science, 8(4), 302–307. doi:10.1111/j.1467-9280.1997.tb00442.x.

    Article  Google Scholar 

  • Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in cognitive sciences, 17(5), 202–209. doi:10.1016/j.tics.2013.03.006.

    Article  PubMed  Google Scholar 

  • Frankenstein, J., Mohler, B. J., Bülthoff, H. H., & Meilinger, T. (2012). Is the map in our head oriented north? Psychological Science, 23(2), 120–125. doi:10.1177/0956797611429467.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1977). Perceiving (pp. 67–82). Acting and Knowing: Toward an ecological psychology. the theory of affordances.

    Google Scholar 

  • Gibson, J. J. (1979). The Theory of Affordances. In The Ecological Approach to Visual Perception (pp. 127–143).

  • Goeke, C. M., König, P., & Gramann, K. (2013). Different strategies for spatial updating in yaw and pitch path integration. Frontiers in behavioral neuroscience, 7, 5. doi:10.3389/fnbeh.2013.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goeke, C. M., Kornpetpanee, S., Köster, M., Fernández-Revelles, A. B., Gramann, K., & König, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific reports. doi:10.1038/srep11426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gramann, K. (2013). Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spatial Cognition and Computation, 13(1), 1–25. doi:10.1080/13875868.2011.589038.

    Article  Google Scholar 

  • Greenauer, N., & Waller, D. (2008). Intrinsic array structure is neither necessary nor sufficient for nonegocentric coding of spatial layouts. Psychonomic Bulletin & Review, 15(5), 1015–1021. doi:10.3758/PBR.15.5.1015.

    Article  Google Scholar 

  • Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cognitive Psychology, 58, 137–176. doi:10.1016/j.cogpsych.2008.06.001.

    Article  PubMed  Google Scholar 

  • Haith, M. M., & Benson, J. B. A. (1998). Infant Cognition. In D. Kuhn & R. Siegler (Eds.), Handbook of child psychology (5th edition) volume 2: Cognition, perception, and language. Hoboken: Wiley.

    Google Scholar 

  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi:10.1016/j.cogpsych.2005.08.003.

    Article  PubMed  Google Scholar 

  • Kaspar, K., König, S., Schwandt, J., & König, P. (2014). The experience of new sensorimotor contingencies by sensory augmentation. Consciousness and Cognition, 28, 47–63. doi:10.1016/j.concog.2014.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly, J. W., Avraamides, M. N., & Loomis, J. M. (2007). Sensorimotor alignment effects in the learning environment and in novel environments. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(6), 1092–1107. doi:10.1037/0278-7393.33.6.1092.

    Article  PubMed  Google Scholar 

  • Kelly, J. W., & McNamara, T. P. (2008). Spatial memories of virtual environments: How egocentric experience, intrinsic structure, and extrinsic structure interact. Psychonomic Bulletin & Review, 15, 322–327.

    Article  Google Scholar 

  • Klatzky, R. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In Spatial cognition - An interdisciplinary approach to representation and processing of spatial knowledge (pp. 1–17). doi:10.1007/3-540-69342-4 (September 1997).

  • König, S. U., Schumann, F., Keyser, J., Goeke, C., Krause, C., Wache, S., et al. (2016). Learning new sensorimotor contingencies: effects of long-term use of sensory augmentation on the brain and conscious perception. Plos One, 11, 1–35. doi:10.1371/journal.pone.0166647.

    Article  Google Scholar 

  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). Nonvisual navigation by blind and sighted: assessment of path integration ability. Journal of Experimental Psychology: General, 122(1), 73–91. doi:10.1037/0096-3445.122.1.73.

    Article  Google Scholar 

  • Mallot, H. A., & Basten, K. (2009). Embodied spatial cognition: biological and artificial systems. Image and Vision Computing, 27(11), 1658–1670. doi:10.1016/j.imavis.2008.09.001.

    Article  Google Scholar 

  • Masters, M. S., & Sanders, B. (1993). Is the gender difference in mental rotation disappearing? Behavior Genetics, 23(4), 337–341. doi:10.1007/BF01067434.

    Article  PubMed  Google Scholar 

  • Maye, A., & Engel, A. K. (2011). A discrete computational model of sensorimotor contingencies for object perception and control of behavior. IEEE International Conference on Robotics and Automation. doi:10.1109/ICRA.2011.5979919.

    Article  Google Scholar 

  • Maye, A., & Engel, A. K. (2012). Time scales of sensorimotor contingencies. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (vol. 7366 LNAI, pp. 240–249). doi:10.1007/978-3-642-31561-9_27.

  • Maye, A., & Engel, A. K. (2013). Extending sensorimotor contingency theory: prediction, planning, and action generation. Adaptive Behavior, 21(6), 423–436. doi:10.1177/1059712313497975.

    Article  Google Scholar 

  • McNamara, T. P. (2002). How are the Locations of Objects in the Environment Represented in Memory? In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial Cognition III: Routes and Navigation, Human Memory and Learning, Spatial Representation and Spatial Learning (pp. 174–191). Berlin: Springer. doi:10.1007/3-540-45004-1_11.

  • McNamara, T. P., Rump, B., & Werner, S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review, 10(3), 589–595. doi:10.3758/BF03196519.

    Article  Google Scholar 

  • McNamara, T. P., Sluzenski, J., & Rump, B. (2008). 2.11-Human Spatial Memory and Navigation. doi:10.1016/b078-012370509-9.00176-5.

  • Meilinger, T. (2008a). The network of reference frames theory: a synthesis of graphs and cognitive maps. In Spatial Cognition VI. Learning, Reasoning, and Talking (pp. 344–360). http://www.springerlink.com/index/y22uq32mg0347887.

  • Meilinger, T. (2008b). Strategies of orientation in environmental spaces. biological cybernetics. Tübingen: MPI for Biological Cybernetics.

    Google Scholar 

  • Meilinger, T., Frankenstein, J., & Bülthoff, H. H. (2013). Learning to navigate: experience versus maps. Cognition, 129(1), 24–30. doi:10.1016/j.cognition.2013.05.013.

    Article  PubMed  Google Scholar 

  • Meilinger, T., Frankenstein, J., Watanabe, K., Bülthoff, H. H., & Hölscher, C. (2015). Reference frames in learning from maps and navigation. Psychological Research, 79(6), 1000–1008. doi:10.1007/s00426-014-0629-6.

    Article  PubMed  Google Scholar 

  • Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. Quarterly journal of experimental psychology (2006), 67(3), 1–28. doi:10.1080/17470218.2013.821145.

  • Meilinger, T., Strickrodt, M., & Bülthoff, H. H. (2016). Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition, 155, 77–95. doi:10.1016/j.cognition.2016.06.003.

    Article  Google Scholar 

  • Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “Virtual” maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(519), 73–87. doi:10.1016/S1090-5138(97)00104-9.

    Article  Google Scholar 

  • Montello, D. R. (1993). Scale and multiple psychologies of space. Spatial Information Theory A Theoretical Basis for GIS. doi:10.1007/3-540-57207-4_21.

    Article  Google Scholar 

  • Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(1), 162–170. doi:10.1037/0278-7393.28.1.162.

    Article  PubMed  Google Scholar 

  • Mou, W., McNamara, T. P., Rump, B., & Xiao, C. (2006). Roles of egocentric and allocentric spatial representations in locomotion and reorientation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(6), 1274–1290. doi:10.1037/0278-7393.32.6.1274.

    Article  PubMed  Google Scholar 

  • Mou, W., McNamara, T. P., Valiquette, C. M., & Rump, B. (2004). Allocentric and egocentric updating of spatial memories. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 142–157. doi:10.1037/0278-7393.30.1.142.

    Article  PubMed  Google Scholar 

  • Nardini, M., Burgess, N., Breckenridge, K., & Atkinson, J. (2006). Differential developmental trajectories for egocentric, environmental and intrinsic frames of reference in spatial memory. Cognition, 101(1), 153–172. doi:10.1016/j.cognition.2005.09.005.

    Article  PubMed  Google Scholar 

  • Newhouse, P., Newhouse, C., & Astur, R. S. (2007). Sex differences in visual-spatial learning using a virtual water maze in pre-pubertal children. Behavioural Brain Research, 183(1), 1–7.

    Article  Google Scholar 

  • Noë, A. (2004). Action in perception. Cambridge: MIT Press.

    Google Scholar 

  • O’Keefe, J. (1991). An allocentric spatial model for the Hippocampal cognitive map. Hippocampus, 1, 230–235.

    Article  Google Scholar 

  • O’Regan, J. K. (2011). Why red doesn’t sound like a bell: Understanding the feel of consciousness. New York: Oxford University Press.

    Book  Google Scholar 

  • O’Regan, J. K., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–1031. doi:10.1017/S0140525X01000115.

    Article  PubMed  Google Scholar 

  • Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York: FJ Langdon & JL Lunzer, Trans.

    Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100, 163–182.

    Article  Google Scholar 

  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. doi:10.3758/BF03211566.

    Article  Google Scholar 

  • Riecke, B. E., Cunningham, D. W., & Bülthoff, H. H. (2007). Spatial updating in virtual reality: The sufficiency of visual information. Psychological Research. doi:10.1007/s00426-006-0085-z.

    Article  PubMed  Google Scholar 

  • Sargent, J., Dopkins, S., Philbeck, J., & Modarres, R. (2008). Spatial memory during progressive disorientation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(3), 602.

    Article  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin & Review, 4(1), 102–106.

    Article  Google Scholar 

  • Sholl, M. J. (1987). Cognitive maps as orienting schemata. Journal of Experimental Psychology, 13(4), 615.

    PubMed  Google Scholar 

  • Sholl, M. J. (2008). Human allocentric heading orientation and ability. Current Directions in Psychological Science, 17(4), 275–280. doi:10.1111/j.1467-8721.2008.00589.x.

    Article  Google Scholar 

  • Sholl, M. J., Kenny, R. J., & DellaPorta, K. A. (2006). Allocentric-heading recall and its relation to self-reported sense-of-direction. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(3), 516.

    Article  Google Scholar 

  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large scale environments. Adv. Child Develop. Behav., 10, 9–55.

    Article  Google Scholar 

  • Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9, 315–320. doi:10.1111/1467-9280.00062.

    Article  Google Scholar 

  • Street, W. N., & Wang, R. F. (2014). Differentiating spatial memory from spatial transformations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40, 602–608. doi:10.1037/a0035279.

    Article  PubMed  Google Scholar 

  • Sun, H.-J., Chan, G. S. W., & Campos, J. L. (2004). Active navigation and orientation-free spatial representations. Memory & Cognition, 32(1), 51–71. doi:10.3758/BF03195820.

    Article  Google Scholar 

  • Trullier, O., Wiener, S. I., Berthoz, A., & Meyer, J. A. (1997). Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51, 483–544.

    Article  Google Scholar 

  • Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846. doi:10.1037/0096-1523.24.3.830.

    Article  PubMed  Google Scholar 

  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. An International Journal of Complexity and, 1992, 328. doi:10.1111/j.1468-0149.1965.tb01386.x.

    Article  Google Scholar 

  • Waller, D., & Hodgson, E. (2006). Transient and enduring spatial representations under disorientation and self-rotation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(4), 867–882. doi:10.1016/j.micinf.2011.07.011.Innate.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215–250. doi:10.1016/S0010-0277(00)00105-0.

    Article  PubMed  Google Scholar 

  • Wang, R. F., & Spelke, E. S. (2002). Human spatial representation: insights from animals. Trends in Cognitive Sciences, 6(9), 376–382.

    Article  Google Scholar 

  • Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cognition & Computation, 9(2), 152–165. doi:10.1080/13875860902906496.

    Article  Google Scholar 

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic bulletin & review, 9(4), 625–36. http://www.ncbi.nlm.nih.gov/pubmed/12613670.

  • Woolley, D. G., Vermaercke, B., de Beeck, H. O., Wagemans, J., Gantois, I., D’Hooge, R., et al. (2010). Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research, 208(2), 408–414.

    Article  Google Scholar 

Download references

Acknowledgements

Most of all, we would like to thank all the people who helped with recording and preparing the stimuli. Especially, we thank Antonia Kaiser and Annete Aumeistere, who helped a lot with the recordings.

Author information

Authors and Affiliations

Authors

Contributions

CG, SUK, and TM wrote the main manuscript. SUK wrote the revision of the manuscript and provided new figures and tables for the revised paper. PK, CG, and TM proofread and iteratively improved the revised manuscript. SUK and CG recorded the experimental data. CG implemented the study and analyzed the data. PK suggested the study design and procedures for analysis and supervised the study.

Corresponding author

Correspondence to Sabine U. König.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Funding

This work was funded by the European Union’s Horizon 2020 program, H2020-FETPROACT-2014, SEP: 210141273, ID: 641321 socSMCs.

Human and animal rights statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional and National Research Committees.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Sabine U. König and Caspar Goeke shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, S.U., Goeke, C., Meilinger, T. et al. Are allocentric spatial reference frames compatible with theories of Enactivism?. Psychological Research 83, 498–513 (2019). https://doi.org/10.1007/s00426-017-0899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-017-0899-x

Navigation