The processing of price comparison is not holistic but componential

Original Article


In three experiments, we evaluate whether the processing of prices is holistic or componential. When participants receive two prices and they select the higher price, distance effects are found when the distances between the two prices are defined holistically but not when they are defined in terms of digits (Experiment 1). This result suggests that prices are processed holistically. However, we show that the holistic distance effect can be explained by the compatibility between the digits and the monetary category of prices (euro and cent). After controlling for the holistic distance, compatible trials (e.g., 8 euro–4 cent, 8 > 4, and euro > cent) are processed faster than incompatible trials (e.g., 8 cent–4 euro, 8 > 4 but cent < euro) with simultaneous and sequential presentation of prices (Experiment 2). Moreover, the compatibility effect is modulated by the ratio of intra monetary category comparisons (8 euro–6 euro) and inter monetary category comparisons (8 euro–4 cents) (Experiment 3). The existence of compatibility effects between the digits and the monetary category of prices suggests that cognitive processing of prices is not holistic but componential.



We thank Patricia Megías and Esteban Martín for helping with the testing of participants in Experiment 1. The complete set of stimuli used in the study is available from the author upon request. Preparation of this manuscript was supported by Grant PSI2016-75250-P awarded to Pedro Macizo from the Spanish Ministry of Economy, Industry and Competitiveness. All procedures performed in this study involving human participants were in accordance with the ethical standards of the research ethical committee at the University of Granada and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology General, 124, 434–452. doi: 10.1037/0096-3445.124.4.434.CrossRefGoogle Scholar
  2. Cao, B., Li, F., Zhang, L., Wang, Y., & Li, H. (2012). The holistic processing of price comparison: Behavioral and electrophysiological evidences. Biological Psychology, 89, 63–70. doi: 10.1016/j.biopsycho.2011.09.005.CrossRefPubMedGoogle Scholar
  3. Coulter, K. S., & Coulter, R. A. (2005). Size does matter: The effects of magnitude representation congruency on price perceptions and purchase likelihood. Journal of Consumer Research, 15, 64–76. doi: 10.1207/s15327663jcp1501_9.CrossRefGoogle Scholar
  4. Coulter, K. S., & Coulter, R. A. (2007). Distortion of price discount perceptions: The right digit effect. Journal of Consumer Research, 34, 162–173. doi: 10.1086/518526.CrossRefGoogle Scholar
  5. Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison. Journal of Experimental Psychology Human Perception and Performance, 16, 626–641. doi: 10.1037/0096-1523.16.3.626.CrossRefPubMedGoogle Scholar
  6. Dehaene, S., & Marques, J. F. (2002). Cognitive euroscience: Scalar variability in price estimation and the cognitive consequences of switching to the euro. Quarterly Journal of Experimental Psychology Human Experimental Psychology, 55, 705–731. doi: 10.1080/02724980244000044.CrossRefPubMedGoogle Scholar
  7. Fitousi, D. (2010). Dissociating between cardinal and ordinal and between the value and size magnitudes of coins. Psychonomic Bulletin and Review, 17, 889–894. doi: 10.3758/PBR.17.6.889.CrossRefPubMedGoogle Scholar
  8. Ganor-Stern, D., Pinhas, M., & Tzelgov, J. (2009). Comparing two-digit numbers: The importance of being presented together. Quarterly Journal of Experimental Psychology, 62, 444–452. doi: 10.1080/17470210802391631.CrossRefGoogle Scholar
  9. Ganor-Stern, D., Tzelgov, J., & Ellenbogen, R. (2007). Automaticity and two-digit numbers. Journal of Experimental Psychology Human Perception and Performance, 33, 483–496. doi: 10.1037/0096-1523.33.2.483.CrossRefPubMedGoogle Scholar
  10. Goldman, R., Ganor-Stern, D., & Tzelgov, T. (2012). “On the money”. Monetary and numerical judgments of currency. Acta Psychologica, 141, 222–230. doi: 10.1016/j.actpsy.2012.07.005.CrossRefPubMedGoogle Scholar
  11. Huber, S., Bahnmueller, J., Klein, E., & Moeller, K. (2015). Testing a model of componential processing of multi-symbol numbers -evidence from measurement units. Psychonomic Bulletin and Review. doi: 10.3758/s13423-015-0805-8.PubMedGoogle Scholar
  12. Huber, S., Cornelesen, S., Moeller, K., & Nuerk, H. C. (2014). Towards a model framework of generalized parallel componential processing of multi-symbol numbers. Journal of Experimental Psychology Learning Memory and Cognition. doi: 10.1037/xlm0000043.Google Scholar
  13. Huber, S., Moeller, K., Nuerk, H.-C., & Willmes, K. (2013). A computational modelling approach on three-digit number processing. Topics in Cognitive Science, 5, 317–334. doi: 10.1111/tops.12016.CrossRefPubMedGoogle Scholar
  14. Huber, S., Nuerk, H. C., Willmes, K., & Moeller, K. (2016). A general model framework for multi-symbol number comparison. Psychological Review, 123(6), 667–695. doi: 10.1037/rev0000040.CrossRefPubMedGoogle Scholar
  15. Macizo, P. (2015). Conflict resolution in two-digit number processing: Evidence of an inhibitory mechanism. Psychological Research. doi: 10.1007/s00426-015-0716-3.Google Scholar
  16. Macizo, P., & Herrera, A. (2010). Two-digit number comparison: Decade-unit and unit-decade produce the same compatibility effect with number words. Canadian Journal of Experimental Psychology, 64, 17–24. doi: 10.1037/a0015803.CrossRefPubMedGoogle Scholar
  17. Macizo, P., & Herrera, A. (2011). Cognitive control in number processing: Evidence from the unit-decade compatibility effect. Acta Psychologica, 136, 112–118. doi: 10.1016/j.actpsy.2010.10.008.CrossRefPubMedGoogle Scholar
  18. Macizo, P., & Herrera, A. (2013a). Do people access meaning when they name banknotes? Cognitive Processing, 14, 43–49. doi: 10.1007/s10339-012-0531-3.CrossRefPubMedGoogle Scholar
  19. Macizo, P., & Herrera, A. (2013b). The processing of Arabic numbers is under cognitive control. Psychological Research, 77, 651–658. doi: 10.1007/s00426-012-0456-6.CrossRefPubMedGoogle Scholar
  20. Macizo, P., Herrera, A., Paolieri, D., & Román, P. (2010). Is there cross-language modulation when bilinguals process number words? Applied Psycholinguistics, 31, 651–669. doi: 10.1017/S0142716410000184.CrossRefGoogle Scholar
  21. Macizo, P., Herrera, A., Román, P., & Martín, M. C. (2011). The processing of two-digit numbers in bilinguals. British Journal of Psychology, 102, 464–477. doi: 10.1111/j.2044-8295.2010.02005.x.CrossRefPubMedGoogle Scholar
  22. Macizo, P., Herrera, A., Román, P., & Martín, M. C. (2012). Proficiency in a second language influences the processing of number words. Journal of Cognitive Psychology, 23, 915–921. doi: 10.1080/20445911.2011.586626.CrossRefGoogle Scholar
  23. Macizo, P., & Morales, L. (2015). Cognitive processing of currency: Euros and dollars. British Journal of Experimental Psychology, 106, 583–596. doi: 10.1111/bjop.12114.CrossRefGoogle Scholar
  24. Marques, J. F., & Dehaene, S. (2004). Developing intuition for prices in euros: Rescaling or relearning prices? Journal of Experimental Psychology Applied, 10, 148–155. doi: 10.1037/1076-898X.10.3.148.CrossRefPubMedGoogle Scholar
  25. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97. doi: 10.1037/h0043158.CrossRefPubMedGoogle Scholar
  26. Moeller, K., Klein, E., & Nuerk, H. C. (2013). Magnitude representation in sequential comparison of two-digit numbers is not holistic either. Cognitive Processing, 14, 51–62. doi: 10.1007/s10339-012-0535-z.CrossRefPubMedGoogle Scholar
  27. Moeller, K., Nuerk, H. C., & Willmes, K. (2009). Internal number magnitude representation is not holistic, either. The European Journal of Cognitive Psychology, 21, 672–685. doi: 10.1080/09541440802311899.CrossRefGoogle Scholar
  28. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520. doi: 10.1038/2151519a0.CrossRefPubMedGoogle Scholar
  29. Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line—a review of multi-digit number processing. Journal of Psychology, 219, 3–22. doi: 10.1027/2151-2604/a000041.Google Scholar
  30. Nuerk, H. C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33. doi: 10.1016/S0010-0277(01)00142-1.CrossRefPubMedGoogle Scholar
  31. Nuerk, H. C., Weger, U., & Willmes, K. (2004). On the perceptual generality of the unit-decade compatibility effect. Experimental Psychology, 51, 72–79. doi: 10.1027/1618-3169.51.1.72.CrossRefPubMedGoogle Scholar
  32. Thomas, M., & Morwitz, V. G. (2005). Penny wise and pound foolish: The left digit effect in price cognition. Journal of Consumer Research, 32, 54–64. doi: 10.1086/429600.CrossRefGoogle Scholar
  33. Zhang, J., & Wang, H. (2005). The effect of external representations on numeric tasks. Quarterly Journal of Experimental Psychology, 58, 817–838. doi: 10.1080/02724980443000340.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Psicología Experimental, Facultad de Psicología, Mind, Brain and Behavior Research Center (CIMCYC, Spain)Universidad de GranadaGranadaSpain

Personalised recommendations