Tactile motion lacks momentum

  • Gianluca Macauda
  • Bigna Lenggenhager
  • Rebekka Meier
  • Gregory Essick
  • Peter Brugger
Original Article

Abstract

The displacement of the final position of a moving object in the direction of the observed motion path, i.e. an overestimation, is known as representational momentum. It has been described both in the visual and the auditory domain, and is suggested to be modality-independent. Here, we tested whether a representational momentum can also be demonstrated in the somatosensory domain. While the cognitive literature on representational momentum suggests that it can, previous work on the psychophysics of tactile motion perception would rather predict an underestimation of the perceived endpoint of a tactile stimulus. Tactile motion stimuli were applied on the left and the right dorsal forearms of 32 healthy participants, who were asked to indicate the subjectively perceived endpoint of the stimulation. Velocity, length and direction of the trajectory were varied. Contrary to the prediction based on the representational momentum literature, participants in our experiment significantly displaced the endpoint against the direction of movement (underestimation). The results are thus compatible with previous psychophysical findings on the perception of tactile motion. Further studies combining paradigms from classical psychophysics and cognitive psychology will be needed to resolve the apparently paradoxical predictions by the two literatures.

Notes

Acknowledgements

We thank Stefan Engelter, senior neurologist at University Hospital Basel, for encouraging us to publish this experiment. We thank Peter Rohner for the illustration of the experimental setup and Daniel Goldreich for his comments on a previous version of the manuscript. Finally, the very constructive critique of three expert reviewers is acknowledged.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local Ethics Committee of the University of Basel. All participants gave written informed consent before the experiment.

References

  1. Actis-Grosso, R., & Stucchi, N. (2003). Shifting the start: Backward mislocation of the initial position of a motion. Journal of Experimental Psychology Human Perception and Performance, 29(3), 675–691.CrossRefPubMedGoogle Scholar
  2. Bolognini, N., Casanova, D., Maravita, A., & Vallar, G. (2012). Bisecting real and fake body parts: Effects of prism adaptation after right brain damage. Frontiers in Human Neuroscience, 6, 154. doi: 10.3389/fnhum.2012.00154.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brehaut, J. C., & Tipper, S. P. (1996). Representational momentum and memory for luminance. Journal of Experimental Psychology Human Perception and Performance, 22(2), 480–501.CrossRefPubMedGoogle Scholar
  4. Brouwer, A.-M., Franz, V. H., & Thornton, I. M. (2004). Representational momentum in perception and grasping: Translating versus transforming objects. Journal of Vision, 4(7), 575–584. doi: 10.1167/4.7.5.CrossRefPubMedGoogle Scholar
  5. Brugger, P., & Meier, R. (2015). A new illusion at your elbow. Perception, 44(2), 219–221. doi: 10.1068/p7910.CrossRefPubMedGoogle Scholar
  6. Cai, R. H., Jacobson, K., Baloh, R., Schlag-Rey, M., & Schlag, J. (2000). Vestibular signals can distort the perceived spatial relationship of retinal stimuli. Experimental Brain Research, 135(2), 275–278. doi: 10.1007/s002210000549.CrossRefPubMedGoogle Scholar
  7. Cavanagh, P., & Anstis, S. (2013). The flash grab effect. Vision Research, 91, 8–20. doi: 10.1016/j.visres.2013.07.007.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cellini, C., Scocchia, L., & Drewing, K. (2016). The buzz-lag effect. Experimental Brain Research, 234(10), 2849–2857. doi: 10.1007/s00221-016-4687-4.CrossRefPubMedGoogle Scholar
  9. Chapman, L. J., & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition, 6(2), 175–183.CrossRefPubMedGoogle Scholar
  10. Christopher Bill, J., & Teft, L. W. (1972). Space–time relations: The effects of variations in stimulus and interstimulus interval duration on perceived visual extent. Acta Psychologica, 36(5), 358–369. doi: 10.1016/0001-6918(72)90032-7.CrossRefGoogle Scholar
  11. Cody, F. W. J., Garside, R. A. D., Lloyd, D., & Poliakoff, E. (2008). Tactile spatial acuity varies with site and axis in the human upper limb. Neuroscience Letters, 433(2), 103–108. doi: 10.1016/j.neulet.2007.12.054.CrossRefPubMedGoogle Scholar
  12. Essick, G. K. (1998). Factors affecting direction discrimination of moving tactile stimuli. ADVANCES IN PSYCHOLOGY-AMSTERDAM-, 127, 1–54.CrossRefGoogle Scholar
  13. Essick, G. K., Bredehoeft, K. R., McLaughlin, D. F., & Szaniszlo, J. A. (1991). Directional sensitivity along the upper limb in humans. Somatosensory and Motor Research, 8(1), 13–22.CrossRefPubMedGoogle Scholar
  14. Essick, G. K., McGlone, F., Dancer, C., Fabricant, D., Ragin, Y., Phillips, N., & Guest, S. (2010). Quantitative assessment of pleasant touch. Neuroscience and Biobehavioral Reviews, 34(2), 192–203. doi: 10.1016/j.neubiorev.2009.02.003.CrossRefPubMedGoogle Scholar
  15. Freyd, J. J. (1992). Dynamic representations guiding adaptive behavior. Time, action and cognition (pp. 309–323). Berlin: Springer.CrossRefGoogle Scholar
  16. Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. The American Journal of Psychology, 97(3), 323–341.CrossRefPubMedGoogle Scholar
  17. Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology Learning Memory and Cognition, 13(2), 259–268. doi: 10.1037/0278-7393.13.2.259.CrossRefGoogle Scholar
  18. Freyd, J. J., Kelly, M. H., & DeKay, M. L. (1990). Representational momentum in memory for pitch. Journal of Experimental Psychology Learning Memory and Cognition, 16(6), 1107–1117. doi: 10.1037/0278-7393.16.6.1107.CrossRefGoogle Scholar
  19. Gallace, A., & Spence, C. (2010). The science of interpersonal touch: An overview. Neuroscience and Biobehavioral Reviews, 34(2), 246–259. doi: 10.1016/j.neubiorev.2008.10.004.CrossRefPubMedGoogle Scholar
  20. Getzmann, S., & Lewald, J. (2009). Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 193(3), 437–443. doi: 10.1007/s00221-008-1641-0.CrossRefPubMedGoogle Scholar
  21. Getzmann, S., Lewald, J., & Guski, R. (2004). Representational momentum in spatial hearing. Perception, 33(5), 591–599.CrossRefPubMedGoogle Scholar
  22. Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS One, 2(3), e333. doi: 10.1371/journal.pone.0000333.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goldreich, D., & Tong, J. (2013). Prediction, postdiction, and perceptual length contraction: A Bayesian low-speed prior captures the cutaneous rabbit and related illusions. Consciousness Research, 4, 221. doi: 10.3389/fpsyg.2013.00221.Google Scholar
  24. Hall, G. S., & Donaldson, H. H. (1885). Motor Sensations on the Skin. Mind, 10(40), 557–572.CrossRefGoogle Scholar
  25. Helson, H. (1930). The Tau effect—an example of psychological relativity. Science, 71(1847), 536–537. doi: 10.1126/science.71.1847.536.CrossRefPubMedGoogle Scholar
  26. Hohwy, J. (2013). The predictive mind. Oxford: Oxford University Press.CrossRefGoogle Scholar
  27. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory and Cognition, 18(3), 299–309.CrossRefPubMedGoogle Scholar
  28. Hubbard, T. L. (1995a). Auditory representational momentum: Surface form, direction, and velocity effects. The American Journal of Psychology, 108(2), 255–274. doi: 10.2307/1423131.CrossRefGoogle Scholar
  29. Hubbard, T. L. (1995b). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology Learning Memory and Cognition, 21(1), 241.CrossRefGoogle Scholar
  30. Hubbard, T. L. (1995c). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin and Review, 2(3), 322–338.CrossRefPubMedGoogle Scholar
  31. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin and Review, 12(5), 822–851. doi: 10.3758/BF03196775.CrossRefPubMedGoogle Scholar
  32. Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin and Review, 21(6), 1371–1403. doi: 10.3758/s13423-014-0624-3.CrossRefPubMedGoogle Scholar
  33. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception and Psychophysics, 44(3), 211–221.CrossRefPubMedGoogle Scholar
  34. Hubbard, T. L., & Motes, M. A. (2002). Does representational momentum reflect a distortion of the length or the endpoint of a trajectory? Cognition, 82(3), 89–99.CrossRefGoogle Scholar
  35. Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. The Quarterly Journal of Experimental Psychology A Human Experimental Psychology, 58(6), 961–979. doi: 10.1080/02724980443000368.CrossRefPubMedGoogle Scholar
  36. Intraub, H. (2004). Anticipatory spatial representation of 3D regions explored by sighted observers and a deaf-and-blind-observer. Cognition, 94(1), 19–37.CrossRefPubMedGoogle Scholar
  37. Intraub, H., Morelli, F., & Gagnier, K. M. (2015). Visual, haptic and bimodal scene perception: Evidence for a unitary representation. Cognition, 138, 132–147. doi: 10.1016/j.cognition.2015.01.010.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Johnston, H. M., & Jones, M. R. (2006). Higher order pattern structure influences auditory representational momentum. Journal of Experimental Psychology Human Perception and Performance, 32(1), 2–17. doi: 10.1037/0096-1523.32.1.2.CrossRefPubMedGoogle Scholar
  39. Kennett, S., Taylor-Clarke, M., & Haggard, P. (2001). Noninformative vision improves the spatial resolution of touch in humans. Current Biology, 11(15), 1188–1191.CrossRefPubMedGoogle Scholar
  40. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715. doi: 10.1016/S0042-6989(00)00226-1.CrossRefPubMedGoogle Scholar
  41. Kerzel, D. (2002). A matter of design: No representational momentum without predictability. Visual Cognition, 9(1–2), 66–80.CrossRefGoogle Scholar
  42. Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43(25), 2623–2635.CrossRefPubMedGoogle Scholar
  43. Kerzel, D., Jordan, S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology Human Perception and Performance, 27(4), 829–840. doi: 10.1037/0096-1523.27.4.829.CrossRefPubMedGoogle Scholar
  44. Langford, N., Hall, R. J., & Monty, R. A. (1973). Cutaneous perception of a track produced by a moving point across the skin. Journal of Experimental Psychology, 97(1), 59. doi: 10.1037/h0033767.CrossRefPubMedGoogle Scholar
  45. Lawrence, M. A. (2016). ez: Easy analysis and visualization of factorial experiments (Version 4.4-0). https://cran.r-project.org/web/packages/ez/index.html. Accessed 31 Jan 2017.
  46. Lenggenhager, B., Loetscher, T., Kavan, N., Pallich, G., Brodtmann, A., Nicholls, M. E. R., & Brugger, P. (2012). Paradoxical extension into the contralesional hemispace in spatial neglect. Cortex A Journal Devoted to the Study of the Nervous System and Behavior, 48(10), 1320–1328. doi: 10.1016/j.cortex.2011.10.003.CrossRefPubMedGoogle Scholar
  47. Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6(9), 387.CrossRefPubMedGoogle Scholar
  48. Nijhawan, R., & Kirschfeld, K. (2003). Analogous mechanisms compensate for neural delays in the sensory and the motor pathways. Current Biology, 13(9), 749–753. doi: 10.1016/S0960-9822(03)00248-3.CrossRefPubMedGoogle Scholar
  49. Pack, C. C., & Bensmaia, S. J. (2015). Seeing and feeling motion: Canonical computations in vision and touch. PLoS Biology, 13(9), e1002271. doi: 10.1371/journal.pbio.1002271.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Phillips, N. (2016). yarrr: A companion to the e-book YaRrr!: The Pirate’s Guide to R. https://cran.r-project.org/web/packages/yarrr/index.html. Accessed 2 May 2016.
  51. R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria. http://www.r-project.org/. Accessed 4 Nov 2015.
  52. Sarrazin, J.-C., Giraudo, M.-D., & Pittenger, J. B. (2005). Tau and Kappa effects in physical space: The case of audition. Psychological Research, 71(2), 201–218. doi: 10.1007/s00426-005-0019-1.CrossRefPubMedGoogle Scholar
  53. Schlag, J., Cai, R. H., Dorfman, A., Mohempour, A., & Schlag-Rey, M. (2000). Extrapolating movement without retinal motion. Nature, 403(6765), 38–39. doi: 10.1038/47402.CrossRefPubMedGoogle Scholar
  54. Seizova-Cajic, T., & Taylor, J. L. (2014). Somatosensory space abridged: Rapid change in tactile localization using a motion stimulus. PLoS One, 9(3), e90892. doi: 10.1371/journal.pone.0090892.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Senna, I., Parise, C. V., & Ernst, M. O. (2015). Hearing in slow-motion: Humans underestimate the speed of moving sounds. Scientific Reports, 5, 14054. doi: 10.1038/srep14054.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tapley, S. M., & Bryden, M. P. (1985). A group test for the assessment of performance between the hands. Neuropsychologia, 23(2), 215–221.CrossRefPubMedGoogle Scholar
  57. Thornton, I. M. (2014). Representational momentum and the human face: An empirical note. WICT, 2014, 101.Google Scholar
  58. Tong, J., Ngo, V., & Goldreich, D. (2016). Tactile length contraction as Bayesian inference. Journal of Neurophysiology. doi: 10.1152/jn.00029.2016.PubMedGoogle Scholar
  59. Trojan, J., Kleinböhl, D., Stolle, A. M., Andersen, O. K., Hölzl, R., & Arendt-Nielsen, L. (2006). Psychophysical “perceptual maps” of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Research, 1120(1), 106–113. doi: 10.1016/j.brainres.2006.08.065.CrossRefPubMedGoogle Scholar
  60. Whitsel, B. L., Favorov, O. V., Kelly, D. G., & Tommerdahl, M. (1991). Mechanisms of dynamic peri- and intra-columnar interactions in somatosensory cortex: Stimulus-specific contrast enhancement by NMDA receptor activation. In O. Frazen & J. Westman (Eds.), Information processing in the somatosensory system (pp. 353–369). London: Macmillan Press.CrossRefGoogle Scholar
  61. Whitsel, B. L., Franzen, O., Dreyer, D. A., Hollins, M., Young, M., Essick, G. K., & Wong, C. (1986). Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosensory Research, 3(3), 185–196.CrossRefPubMedGoogle Scholar
  62. Wickham, H. (2016). tidyverse: Easily install and load “Tidyverse” packages (Version 1.1.1). https://cran.r-project.org/web/packages/tidyverse/index.html. Accessed 31 Jan 2017.
  63. Yoshikawa, S., & Sato, W. (2008). Dynamic facial expressions of emotion induce representational momentum. Cognitive Affective and Behavioral Neuroscience, 8(1), 25–31.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Neuropsychology Unit, Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Center for Integrative Human Physiology (ZIHP)University of ZurichZurichSwitzerland
  3. 3.School of DentistryUniversity of North CarolinaChapel HillUSA
  4. 4.Department of PsychologyUniversity of BernBernSwitzerland

Personalised recommendations