The test of both worlds: identifying feature binding and control processes in congruency sequence tasks by means of action dynamics

  • Stefan Scherbaum
  • Simon Frisch
  • Maja Dshemuchadse
  • Matthias Rudolf
  • Rico Fischer
Original Article


Cognitive control processes enable us to act flexibly in a world posing ever-changing demands on our cognitive system. To study cognitive control, conflict tasks and especially congruency sequence effects have been regarded as a fruitful tool. However, for the last decade a dispute has arisen whether or not congruency sequence effects are indeed a valid measure of cognitive control processes. This debate has led to the development of increasingly complex paradigms involving numerous, intricately designed experimental conditions which are aimed at excluding low-level, associative learning mechanisms like feature binding as an alternative explanation for the emergence of congruency sequence effects. Here, we try to go beyond this all-or-nothing thinking by investigating the assumption that both cognitive control processes as well as feature binding mechanisms occur within trials of the same task. Based on a theoretical dual-route-model of behavior under conflict, we show that both classes of cognitive mechanisms should affect behavior at different points of the decision process. By comparing these predictions to continuous mouse movements from an adapted Simon task, we find evidence that control processes and feature binding mechanisms do indeed coexist within the task but that they follow distinct timing patterns. We argue that this dynamic approach to cognitive processing opens up new ways to investigate the diversity of co-existing processes that contribute to the selection of behavior.

Supplementary material

426_2016_823_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2429 kb)


  1. Band, G. P. H., Ridderinkhof, K. R., & Van Der Molen, M. W. (2003). Speed-accuracy modulation in case of conflict: The roles of activation and inhibition. Psychological Research/Psychologische Forschung, 67(4), 266–279.CrossRefPubMedGoogle Scholar
  2. Blais, C., Stefanidi, A., & Brewer, G. A. (2014). The Gratton effect remains after controlling for contingencies and stimulus repetitions. Cognition, 5, 1207.Google Scholar
  3. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.CrossRefPubMedGoogle Scholar
  4. Botvinick, M. M., & Cohen, J. D. (2014). The computational and neural basis of cognitive control: Charted territory and new frontiers. Cognitive Science, 38(6), 1249–1285.CrossRefPubMedGoogle Scholar
  5. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Science, 8(12), 539–546.CrossRefGoogle Scholar
  6. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.CrossRefPubMedGoogle Scholar
  7. Dale, R., Kehoe, C., & Spivey, M. J. (2007). Graded motor responses in the time course of categorizing atypical exemplars. Memory and Cognition, 35(1), 15–28.CrossRefPubMedGoogle Scholar
  8. Davelaar, E. J. (2008). A computational study of conflict-monitoring at two levels of processing: Reaction time distributional analyses and hemodynamic responses. Brain Research, 1202,109–119.Google Scholar
  9. De Jong, R., Liang, C. C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750.PubMedGoogle Scholar
  10. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.CrossRefGoogle Scholar
  11. Dshemuchadse, M., Grage, T., & Scherbaum, S. (2015). Action dynamics reveal two components of cognitive flexibility in a homonym relatedness judgement task. Frontiers in Cognition, 6, 1244.Google Scholar
  12. Dshemuchadse, M., Scherbaum, S., & Goschke, T. (2012). How decisions emerge: Action dynamics in intertemporal decision making. Journal of Experimental Psychology: General, 142, 151–185.Google Scholar
  13. Duthoo, W., Abrahamse, E. L., Braem, S., Boehler, C. N., & Notebaert, W. (2014). The congruency sequence effect 3.0: A critical test of conflict adaptation. PLoS One, 9(10), e110462.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective & Behavioral Neuroscience, 7(4), 380–390.CrossRefGoogle Scholar
  15. Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of congruency effects. Cognition, 5, 1247.Google Scholar
  16. Egner, T., Ely, S., & Grinband, J. (2010). Going, going, gone: Characterizing the time-course of congruency sequence effects. Frontiers in Cognition, 1, 154.Google Scholar
  17. Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24(2), 539–547.CrossRefPubMedGoogle Scholar
  18. Fischer, R., Dreisbach, G., & Goschke, T. (2008). Context-sensitive adjustments of cognitive control: Conflict-adaptation effects are modulated by processing demands of the ongoing task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(3), 712–718.CrossRefPubMedGoogle Scholar
  19. Fischer, R., & Plessow, F. (2015). Efficient multitasking: Parallel versus serial processing of multiple tasks. Frontiers in Psychology, 6, 1366.Google Scholar
  20. Fischer, R., Plessow, F., Dreisbach, G., & Goschke, T. (2015). Individual differences in the context-dependent recruitment of cognitive control: Evidence from action versus state orientation. Journal of Personality, 83(5), 575–583.CrossRefPubMedGoogle Scholar
  21. Fischer, R., & Schubert, T. (2008). Valence processing bypassing the response selection bottleneck? Evidence from the psychological refractory period paradigm. Experimental Psychology, 55(3), 203–211.CrossRefPubMedGoogle Scholar
  22. Frisch, S., Dshemuchadse, M., Görner, M., Goschke, T., & Scherbaum, S. (2015). Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior. Cognitive Processing, 16(4), 377–388.CrossRefPubMedGoogle Scholar
  23. Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506.CrossRefGoogle Scholar
  24. Haazebroek, P., van Dantzig, S., & Hommel, B. (2011). A computational model of perception and action for cognitive robotics. Cognitive Processing, 12(4), 355–365.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research, 56(4), 261–268.CrossRefPubMedGoogle Scholar
  26. Hommel, B. (1998a). Event files: Evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5(1–2), 183–216.CrossRefGoogle Scholar
  27. Hommel, B. (1998b). Automatic stimulus–response translation in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 24(5), 1368–1384.PubMedGoogle Scholar
  28. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2002). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.CrossRefGoogle Scholar
  29. Hommel, B., Proctor, R. W., & Vu, K. P. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1–17.CrossRefPubMedGoogle Scholar
  30. Janczyk, M., Pfister, R., Hommel, B., & Kunde, W. (2014). Who is talking in backward crosstalk? Disentangling response- from goal-conflict in dual-task performance. Cognition, 132(1), 30–43.CrossRefPubMedGoogle Scholar
  31. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.CrossRefPubMedGoogle Scholar
  32. Koch, I., & Prinz, W. (2002). Process interference and code overlap in dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 192–201.Google Scholar
  33. Koop, G. J., & Johnson, J. G. (2011). Response dynamics: A new window on the decision process. Judgment and Decision Making, 6(8), 750–758.Google Scholar
  34. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97(2), 253–270.CrossRefPubMedGoogle Scholar
  35. Kutner, M., Nachtsheim, C., & Neter, J. (2004). Applied linear regression methods (4th ed.). Chicago: McGraw-Hill/Irwin.Google Scholar
  36. Larson, M. J., Clayson, P. E., Kirwan, C. B., & Weissman, D. H. (2016). Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds. Psychophysiology, 53(6), 814–822.Google Scholar
  37. Logan, G. D., & Schulkind, M. D. (2000). Parallel memory retrieval in dual-task situations: I. Semantic memory. Journal of Experimental Psychology: Human Perception and Performance, 26(3), 1072–1090.PubMedGoogle Scholar
  38. Mayr, U., & Awh, E. (2009). The elusive link between conflict and conflict adaptation. Psychological Research, 73(6), 794–802.CrossRefPubMedGoogle Scholar
  39. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452.PubMedGoogle Scholar
  40. McKinstry, C., Dale, R., & Spivey, M. J. (2008). Action dynamics reveal parallel competition in decision making. Psychological Science, 19(1), 22–24.CrossRefPubMedGoogle Scholar
  41. Mikl, M., Marecek, R., Hlustík, P., Pavlicová, M., Drastich, A., Chlebus, P., et al. (2008). Effects of spatial smoothing on fMRI group inferences. Magnetic Resonance Imaging, 26(4), 490–503.CrossRefPubMedGoogle Scholar
  42. Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. Journal of Memory and Language, Special Issue: Emerging Data Analysis, 59(4), 475–494.CrossRefGoogle Scholar
  43. Navon, D., & Miller, J. (2002). Queuing or sharing? A critical evaluation of the single-bottleneck notion. Cognitive Psychology, 44(3), 193–251.CrossRefPubMedGoogle Scholar
  44. Notebaert, W., Gevers, W., Verbruggen, F., & Liefooghe, B. (2006). Top-down and bottom-up sequential modulations of congruency effects. Psychonomic Bulletin and Review, 13(1), 112–117.CrossRefPubMedGoogle Scholar
  45. Notebaert, W., & Verguts, T. (2007). Dissociating conflict adaptation from feature integration: A multiple regression approach. Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1256–1260.PubMedGoogle Scholar
  46. Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10(3), 358–377.PubMedGoogle Scholar
  47. Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244.CrossRefPubMedGoogle Scholar
  48. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefPubMedGoogle Scholar
  49. Plessow, F., Fischer, R., Kirschbaum, C., & Goschke, T. (2011). Inflexibly focused under stress: acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23(11), 3218–3227.CrossRefPubMedGoogle Scholar
  50. Proctor, R. W., & Vu, K. P. L. (2006). Stimulus–response compatibility principles: Data, theory, and application. Boca Raton: CRC Press.Google Scholar
  51. Ridderinkhof, K. R. (2002). Micro-and macro-adjustments of task set: Activation and suppression in conflict tasks. Psychological Research, 66(4), 312–323.CrossRefPubMedGoogle Scholar
  52. Ridderinkhof, K. R., Ullsperger, M., Crone, E., & Nieuwenhuis, S. (2004a). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443–447.CrossRefPubMedGoogle Scholar
  53. Ridderinkhof, K., van den Wildenberg, W. P., Wijnen, J., & Burle, B. (2004b). Response inhibition in conflict tasks is revealed in delta plots. In M. Posner (Ed.), Cognitive neuroscience of attention (pp. 369–377). New York: Guilford Press.Google Scholar
  54. Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, T. (2010). How decisions evolve: The temporal dynamics of action selection. Cognition, 115(3), 407–416.CrossRefPubMedGoogle Scholar
  55. Scherbaum, S., Dshemuchadse, M., & Kalis, A. (2008). Making decisions with a continuous mind. Cognitive, Affective, and Behavioral Neuroscience, 8(4), 454–474.CrossRefGoogle Scholar
  56. Scherbaum, S., Gottschalk, C., Dshemuchadse, M., & Fischer, R. (2015). Action dynamics in multitasking: The impact of additional task factors on the execution of the prioritized motor movement. Frontiers in Cognition, 6, 934.Google Scholar
  57. Schmidt, J. R. (2013). Questioning conflict adaptation: Proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin and Review, 20(4), 615–630.CrossRefPubMedGoogle Scholar
  58. Schmidt, J. R., De Schryver, M., & Weissman, D. H. (2014). Removing the influence of feature repetitions on the congruency sequence effect: Why regressing out confounds from a nested design will often fall short. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2392–2402.PubMedGoogle Scholar
  59. Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81(1), 174–176.CrossRefPubMedGoogle Scholar
  60. Simon, J. R., Acosta, E., Mewaldt, S. P., & Speidel, C. R. (1976). The effect of an irrelevant directional cue on choice reaction time: Duration of the phenomenon and its relation to stages of processing. Perception and Psychophysics, 19(1), 16–22.CrossRefGoogle Scholar
  61. Song, J. H., & Nakayama, K. (2008). Numeric comparison in a visually-guided manual reaching task. Cognition, 106(2), 994–1003.CrossRefPubMedGoogle Scholar
  62. Song, J. H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Sciences, 13(8), 360–366.CrossRefPubMedGoogle Scholar
  63. Spapé, M. M., & Hommel, B. (2014). Sequential modulations of the Simon effect depend on episodic retrieval. Cognition, 5, 855.Google Scholar
  64. Spivey, M. J. (2007). The continuity of mind. Oxford: Oxford University Press.Google Scholar
  65. Spivey, M. J., & Dale, R. (2004). On the continuity of mind: Toward a dynamical account of cognition. The Psychology of Learning and Motivation: Advances in Research and Theory, 45, 87–142.CrossRefGoogle Scholar
  66. Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10393–10398.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRefGoogle Scholar
  68. Stürmer, B., Leuthold, H., Soetens, E., Schroter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 1345–1363.PubMedGoogle Scholar
  69. Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict-adaptation effect: it’s not just priming. Cognitive, Affective, and Behavioral Neuroscience, 5, 467–472.CrossRefGoogle Scholar
  70. Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2022–2037.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PsychologyTechnische Universität DresdenDresdenGermany
  2. 2.Department of PsychologyErnst Moritz Arndt University of GreifswaldGreifswaldGermany

Personalised recommendations