Conflict and disfluency as aversive signals: context-specific processing adjustments are modulated by affective location associations

Original Article

Abstract

Context-specific processing adjustments are one signature feature of flexible human action control. However, up to now the precise mechanisms underlying these adjustments are not fully understood. Here it is argued that aversive signals produced by conflict- or disfluency-experience originally motivate such context-specific processing adjustments. We tested whether the efficiency of the aversive conflict signal for control adaptation depends on the affective nature of the context it is presented in. In two experiments, high vs. low proportions of aversive signals (Experiment 1: conflict trials; Experiment 2: disfluent trials) were presented either above or below the screen center. This location manipulation was motivated by existing evidence that verticality is generally associated with affective valence with up being positive and down being negative. From there it was hypothesized that the aversive signals would lose their trigger function for processing adjustments when presented at the lower (i.e., more negative) location. This should then result in a reduced context-specific proportion effect when the high proportion of aversive signals was presented at the lower location. Results fully confirmed the predictions. In both experiments, the location-specific proportion effects were only present when the high proportion of aversive signals occurred at the more positive location above but were reduced (Experiment 1) or even eliminated (Experiment 2) when the high proportion occurred at the more negative location below. This interaction of processing adjustments with affective background contexts can thus be taken as further hint for an affective origin of control adaptations.

References

  1. Bless, H., & Schwarz, N. (2010). Mental construal and the emergence of assimilation and contrast effects: the inclusion/exclusion model. Advances in Experimental Social Psychology, 42(42), 319–373.CrossRefGoogle Scholar
  2. Botvinick, M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.CrossRefPubMedGoogle Scholar
  3. Botvinick, M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Science, 8(12), 539–546. doi:10.1016/j.tics.2004.10.003.CrossRefGoogle Scholar
  4. Bugg, J. M., & Crump, M. J. (2012). In support of a distinction between voluntary and stimulus-driven control: a review of the literature on proportion congruent effects. Frontiers in Psychology, 3, 367. doi:10.3389/fpsyg.2012.00367.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bugg, J. M., & Hutchison, K. A. (2013). Converging evidence for control of color-word Stroop interference at the item-level. Journal of Experimental Psychology: Human Perception and Performance, 39, 433–449.PubMedGoogle Scholar
  6. Casasanto, D. (2009). Embodiment of abstract concepts: Good and bad in right- and left-handers. Journal of Experimental Psychology: General, 138(3), 351–367.CrossRefGoogle Scholar
  7. Compton, R. J., Huber, E., Levinson, A. R., & Zheutlin, A. (2012). Is “conflict adaptation” driven by conflict? Behavioral and EEG evidence for the underappreciated role of congruent trials. Psychophysiology, 49, 583–589.CrossRefPubMedGoogle Scholar
  8. Crump, M. J. C., Gong, Z., & Milliken, B. (2006). The context-specific proportion congruent effect: location as a contextual cue. Psychonomic Bulletin & Review, 13, 316–321.CrossRefGoogle Scholar
  9. Crump, M. J. C., & Logan, G. D. (2010). Contextual control over task-set retrieval. Attention, Perception, & Psychophysics, 72, 2047–2053.CrossRefGoogle Scholar
  10. Crump, M. J. C., & Milliken, B. (2009). The flexibility of context-specific control: evidence for context-driven generalization of item-specific control settings. Quarterly Journal of Experimental Psychology, 62, 1523–1532.CrossRefGoogle Scholar
  11. Crump, M. J. C., Vaquero, J. M. M., & Milliken, B. (2008). Context-specific learning and control: the role of awareness, task-relevance, and relative salience. Consciousness and Cognition, 17, 22–36.CrossRefPubMedGoogle Scholar
  12. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRefGoogle Scholar
  13. Diede, N. T., & Bugg, J. M. (2016). Spatial proximity as a determinant of context specific attentional settings. Attention, Perception, & Psychophysics. Online First.Google Scholar
  14. Dreisbach, G., & Fischer, R. (2011). If it’s hard to read… try harder! Processing fluency as signal for effort adjustments. Psychological Research, 75(5), 376–383. doi:10.1007/s00426-010-0319-y.CrossRefPubMedGoogle Scholar
  15. Dreisbach, G., & Fischer, R. (2012). Conflicts as aversive signals. Brain and Cognition, 78(2), 94–98. doi:10.1016/j.bandc.2011.12.003.CrossRefPubMedGoogle Scholar
  16. Dreisbach, G., & Fischer, R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24(4), 255–260. doi:10.1177/0963721415569569.CrossRefGoogle Scholar
  17. Dreisbach, G., & Fischer, R. (2016). Conflicts as aversive signals: Motivation for control adaptation in the service of affect regulation. In T. S. Braver (Ed.), Motivation and cognitive control (pp. 188–210). New York: Psychology Press.Google Scholar
  18. Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374–380.CrossRefPubMedGoogle Scholar
  19. Fazio, R. H. (2001). On the automatic activation of associated evaluations: An overview. Cognition and Emotion, 15(2), 115–141.CrossRefGoogle Scholar
  20. Fischer, R., Dreisbach, G., & Goschke, T. (2008). Context-sensitive adjustments of cognitive control: conflict-adaptation effects are modulated by processing demands of the ongoing task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(3), 712–718. doi:10.1037/0278-7393.34.3.712.CrossRefPubMedGoogle Scholar
  21. Fischer, R., Gottschalk, C., & Dreisbach, G. (2014). Context-sensitive adjustment of cognitive control in dual-task performance. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(2), 399–416. doi:10.1037/a0034310.CrossRefPubMedGoogle Scholar
  22. Fritz, J., & Dreisbach, G. (2013). Conflicts as aversive signals: conflict priming increases negative judgments for neutral stimuli. Cognitive, Affective, & Behavioral Neuroscience, 13(2), 311–317. doi:10.3758/s13415-012-0147-1.CrossRefGoogle Scholar
  23. Fritz, J., & Dreisbach, G. (2015). The time course of the aversive conflict signal. Experimental Psychology, 62(1), 30–39.CrossRefPubMedGoogle Scholar
  24. Fritz, J., Fischer, R., & Dreisbach, G. (2015). The influence of negative stimulus features on conflict adaptation: evidence from fluency of processing. Frontiers in Psychology,. doi:10.3389/fpsyg.2015.00185.Google Scholar
  25. Fröber, K., & Dreisbach, G. (2014). The differential influences of positive affect, random reward, and performance-contingent reward on cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 530–547. doi:10.3758/s13415-014-0259-x.CrossRefGoogle Scholar
  26. Gottschalk, C. & Fischer, R. (2016). Activation of context-specific attentional control sets by exogenous allocation of visual attention to the context? Psychological Research. Online first. Google Scholar
  27. Gozli, D. G., Chow, A., Chasteen, A. L., et al. (2013). Valence and vertical space: saccade trajectory deviations reveal metaphorical spatial activation. Visual Cognition, 21, 628–646.CrossRefGoogle Scholar
  28. Heinemann, A., Kunde, W., & Kiesel, A. (2009). Context-specific prime-congruency effects: on the role of conscious stimulus representations for cognitive control. Consciousness and Cognition, 18(4), 966–976. doi:10.1016/j.concog.2009.08.009.CrossRefPubMedGoogle Scholar
  29. Inzlicht, M., Bartholow, B. D., & Hirsh, J. B. (2015). Emotional foundations in cognitive control. Trends in Cognitive Sciences, 19, 126–132. doi:10.1016/j.tics.2015.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jacoby, L. L., Lindsay, D. S., & Hessels, S. (2003). Item-specific control of automatic processes: stroop process dissociations. Psychonomic Bulletin & Review, 10(3), 638–644. doi:10.3758/Bf03196526.CrossRefGoogle Scholar
  31. Lehle, C., & Hübner, R. (2008). On-the-fly adaptation of selectivity in the flanker task. Psychonomic Bulletin & Review, 15(4), 814–818. doi:10.3758/PBR.15.4.814.CrossRefGoogle Scholar
  32. Meier, B. P., Hauser, D. J., Robinson, M. D., Kelland Friesen, C., & Schjeldahl, K. (2007). What’s “up” with God? Vertical space as a representation of the divine. Journal of Personality and Social Psychology, 93, 699–710.CrossRefPubMedGoogle Scholar
  33. Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: associations between affect and vertical position. Psychological Science, 15, 243–247.CrossRefPubMedGoogle Scholar
  34. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition (pp. 55–85). Hillsdale: Erlbaum.Google Scholar
  35. Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science, 9, 45–48.CrossRefGoogle Scholar
  36. Schmidt, J. R. (2013). Questioning conflict adaptation: proportion congruent and Gratton effects reconsidered. Psychonomic Bulletin & Review, 20, 615–630.CrossRefGoogle Scholar
  37. Schmidt, J. R., & Besner, D. (2008). The Stroop effect: why proportion congruent has nothing to do with congruency and everything to do with contingency. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 514–523.CrossRefPubMedGoogle Scholar
  38. Schouppe, N., Braem, S., De Houwer, J., Silvetti, M., Verguts, T., Ridderinkhof, K. R., & Notebaert, W. (2015). No pain, no gain: The affective valence of congruency conditions changes following a successful response. Cognitive Affective & Behavioral Neuroscience.Google Scholar
  39. Schubert, T. W. (2005). Your highness: vertical positions as perceptual symbols of power. Journal of Personality and Social Psychology, 89, 1–21.CrossRefPubMedGoogle Scholar
  40. Schuch, S., & Koch, I. (2015). Mood states influence cognitive control: the case of conflict adaptation. Psychological Research, 79(5), 759–772. doi:10.1007/s00426-014-0602-4.CrossRefPubMedGoogle Scholar
  41. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127–190.CrossRefGoogle Scholar
  42. Song, H., & Schwarz, N. (2008). If it’s hard to read, it’s hard to do: processing fluency affects effort prediction and motivation. Psychological Science, 19(10), 986–988. doi:10.1111/j.1467-9280.2008.02189.x.CrossRefPubMedGoogle Scholar
  43. Tourangeau, R., Couper, M. P., & Conrad, F. G. (2013). “Up means good”: The effect of screen position on evaluative ratings in web surveys. Public Opinion Quarterly, 77, 69–88.CrossRefPubMedPubMedCentralGoogle Scholar
  44. van Steenbergen, H., Band, G. P., & Hommel, B. (2009). Reward counteracts conflict adaptation. Evidence for a role of affect in executive control. Psychological Science, 20(12), 1473–1477. doi:10.1111/j.1467-9280.2009.02470.x.CrossRefPubMedGoogle Scholar
  45. van Steenbergen, H., Band, G. P., & Hommel, B. (2010). In the mood for adaptation: how affect regulates conflict-driven control. Psychological Science, 21(11), 1629–1634. doi:10.1177/0956797610385951.CrossRefPubMedGoogle Scholar
  46. Weidler, B. J., & Bugg, J. M. (2016). Transfer of location-specific control to untrained locations. The Quarterly Journal of Experimental Psychology,. doi:10.1080/17470218.2015.1111396.PubMedGoogle Scholar
  47. Wendt, M., Kluwe, R. H., & Vietze, I. (2008). Location-specific versus hemisphere-specific adaptation of processing selectivity. Psychonomic Bulletin & Review, 15, 135–140.CrossRefGoogle Scholar
  48. Winkielman, P., Schwarz, N., Fazendeiro, T. A., & Reber, R. (2003). The hedonic marking of processing fluency: Implications for evaluative judgements. In J. Musch & K. C. Klauer (Eds.), The psychology of evaluation: Affective processes in cognition and emotion (pp. 189–217). Mahwah: Lawrence Erlbaum.Google Scholar
  49. Xie, J., Wang, R., & Chang, S. (2014). The mechanism of valence-space metaphors: eRP evidence for affective word processing. PLoS One, 9(6), e99479.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xie, J., Huang, Y., & Wang, R. (2015). Affective valence facilitates spatial detection on vertical axis: shorter time strengthens effect. Frontiers in Psychology, 6, 277.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhang, Ya., Hu, Jing, Zhang, Entao, et al. (2015). The influence of spatial representation on valence judgements: an event-related potential study. Journal of Cognitive Psychology, 27, 218–226.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Experimental PsychologyUniversity of RegensburgRegensburgGermany
  2. 2.University of GreifswaldGreifswaldGermany

Personalised recommendations