Skip to main content

Spatial attention across perception and action

Abstract

We hypothesize that a shared spatial attention mechanism is used for both perception and action. To this end we created a new dual-task version of the classical Simon task. In one task, the spatial-input task, associated with input spatial attention, participants named one shape out of two bilaterally presented colored shapes. In a second task, the spatial-output task, associated with output spatial attention, participants discriminated between high and low pitch tones by pressing either a left or a right key. In Experiment 1, input for both tasks appeared simultaneously, and participants were instructed not to prioritize either task. A between tasks Simon-like effect was found for responses to both tasks. Reaction times were shorter when the side of the relevant shape in the spatial-input task and the side of the correct response in the spatial-output task were congruent. In Experiment 2, we manipulated the stimulus-onset asynchrony (SOA) between the inputs for the two tasks and showed that the Simon-like effect remained intact at all SOAs. Experiment 3 was similar to Experiment 1 except that the vocal response for the spatial-input task was not speeded. A Simon-like effect was still observed. Experiment 4 was the same as Experiment 3 except that the non-speeded response for the spatial-input task was manual rather than vocal. No Simon-like effect was observed in this experiment. Our results support a shared spatial attention mechanism involved in the Simon effect and indicate that this spatial attention mechanism is shared by perception and action.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    It is important to distinguish between this claim and a different attention-related claim according to which the Simon effect is due to an attentional shift toward a location (e.g., Nicoletti & Umiltà, 1994). See Hommel (1993) and Zimba and Brito (1995), for a critical examination of this attentional shift hypothesis.

  2. 2.

    We presented the two tasks in that order because this was the order used by Müsseler et al. (2005). To make sure that the same pattern of results would be obtained with a reversed order, we conducted another experiment in which the visual task appeared with (at 0 SOA), or before the tone task. All other aspects of this experiment were identical to those of Experiment 2. We obtained similar Simon-like effects with a minor difference (lack of congruency effect when the SOA was 450 ms). The planned comparisons within each task were as follows: congruency effect for the spatial input task: when the SOA was 0 ms [t(19) = 2.78, p = 0.0059, Cohen's d = 0.6]; when the SOA was 150 ms [t(19) = 1.83, p = 0.0418, Cohen's d = 0.41]; when the SOA was 450 ms [t(19) = 0.98, p = 0.1960, Cohen's d = 0.22].

    Congruency effect for the spatial output task: when the SOA was 0 ms [t(19) = 4.51, p = 0.0002, Cohen's d = 1.01]; when the SOA was 150 ms [t(19) = 2.98, p = 0.0041, Cohen's d = 0.68]; when the SOA was 450 ms [t(19) = 2.64, p = 0.0081, Cohen's d = 0.59].

  3. 3.

    To make sure that the same pattern of results would be obtained regardless of the instructions, we conducted another experiment that was identical to Experiment 2 except that participants were explicitly instructed to respond first to the spatial output task. We obtained a similar Simon-like effect. The planned comparisons within each task were as follows: congruency effect for the spatial input task: when the SOA was 0 ms [t(19) = 2.35, p = 0.0272, Cohen's d = 0.38]; when the SOA was 150 ms [t(19) = 3.10, p = 0.0059, Cohen's d = 0.69]; when the SOA was 450 ms [t(19) = 2.09, p = 0.0431, Cohen's d = 0.29].

    Congruency effect for the spatial output task: when the SOA was 0 ms [t(19) = 2.57, p = 0.0186, Cohen's d = 0.42]; when the SOA was 150 ms [t(19) = 2.34, p = 0.0304, Cohen's d = 0.52]; when the SOA was 450 ms [t(19) = 2.29, p = 0.0333, Cohen's d = 0.35].

  4. 4.

    The error rates in the spatial-input task were 0.047 in the congruent condition and 0.050 in the incongruent condition.

  5. 5.

    The error rates in the spatial-input task were 0.005 in the congruent condition and 0.006 in the incongruent condition.

References

  1. Abrahamse, E. L., & Van Der Lubbe, R. H. J. (2008). Endogenous orienting modulates the Simon effect: Critical factors in experimental design. Psychological Research, 72(3), 261–272. doi:10.1007/s00426-007-0110-x.

    Article  PubMed  Google Scholar 

  2. Bridgeman, B., & Tseng, P. (2011). Embodied cognition and the perception-action link. Physics of Life Reviews,. doi:10.1016/j.plrev.2011.01.002.

    PubMed  Google Scholar 

  3. Brisson, B., & Jolicoeur, P. (2007). The N2pc component and stimulus duration. NeuroReport, 18(11), 1163–1166. doi:10.1097/WNR.0b013e3281e72d1b.

    Article  PubMed  Google Scholar 

  4. Cohen, A., & Magen, H. (2005). Hierarchical systems of attention and action. In: Attention in action: Advances from cognitive neuroscience (pp. 27–67). doi:10.4324/9780203449226_chapter_2.

  5. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837. doi:10.1016/0042-6989(95)00294-4.

    Article  PubMed  Google Scholar 

  6. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225–234. doi:10.1016/S0921-884X(96)95711-2.

    Article  PubMed  Google Scholar 

  7. Eimer, M. (1998). The lateralized readiness potential as an on-line measure of central response activation processes. Behavior Research Methods, Instruments, & Computers, 30(1), 146–156.

    Article  Google Scholar 

  8. Gherri, E., & Eimer, M. (2010). Manual response preparation disrupts spatial attention: An electrophysiological investigation of links between action and attention. Neuropsychologia, 48(4), 961–969. doi:10.1016/j.neuropsychologia.2009.11.017.

    Article  PubMed  Google Scholar 

  9. Hazeltine, E., Ruthruff, E., & Remington, R. W. (2006). The role of input and output modality pairings in dual-task performance: Evidence for content-dependent central interference. Cognitive Psychology, 52(4), 291–345. doi:10.1016/j.cogpsych.2005.11.001.

    Article  PubMed  Google Scholar 

  10. Hazeltine, E., Teague, D., & Ivry, R. B. (2002). Simultaneous dual-task performance reveals parallel response selection after practice. Journal of Experimental Psychology Human Perception and Performance, 28(3), 527–545. doi:10.1037/0096-1523.28.3.527.

    Article  PubMed  Google Scholar 

  11. Hedge, A., & Marsh, N. W. A. (1975). The effect of irrelevant spatial correspondences on two-choice response-time. Acta Psychologica, 39(6), 427–439. doi:10.1016/0001-6918(75)90041-4.

    Article  PubMed  Google Scholar 

  12. Hommel, B. (1993). The role of attention for the Simon effect. Psychological Research, 55(3), 208–222. doi:10.1007/BF00419608.

    Article  PubMed  Google Scholar 

  13. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526. doi:10.1007/s00426-009-0234-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hommel, B. (2011a). Attention and spatial stimulus coding in the Simon task: A rejoinder to van der Lubbe and Abrahamse (2010). Acta Psychologica, 136(2), 265–268. doi:10.1016/j.actpsy.2010.10.002.

    Article  PubMed  Google Scholar 

  15. Hommel, B. (2011b). The Simon effect as tool and heuristic. Acta Psychol (Amst), 136(2), 189–202. doi:10.1016/j.actpsy.2010.04.011.

    Article  Google Scholar 

  16. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. The Behavioral and Brain Sciences, 24(5), 849–937. doi:10.1017/S0140525X01000103.

    Article  PubMed  Google Scholar 

  17. Israel, M., & Cohen, A. (2011). Involuntary strategy-dependent dual task performance. Psychological Research, 75(6), 513–524.

    Article  PubMed  Google Scholar 

  18. Johnston, J. C., McCann, R. S., & Remington, R. W. (1995). Chronometric evidence for two types of attention. Psychological Science, 6(6), 365–369. doi:10.1111/j.1467-9280.1995.tb00527.x.

    Article  Google Scholar 

  19. Kahneman, D. (1973). Attention and effort. The American Journal of Psychology,. doi:10.2307/1421603.

    Google Scholar 

  20. Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240–249. doi:10.1111/j.1469-8986.2007.00611.x.

    Article  PubMed  Google Scholar 

  21. Koch, I., & Jolicoeur, P. (2007). Orthogonal cross-task compatibility: Abstract spatial coding in dual tasks. Psychonomic Bulletin and Review, 14(1), 45–50. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17546730.

  22. Koch, I., Metin, B., & Schuch, S. (2003). The role of temporal unpredictability for process interference and code overlap in perception-action dual tasks. Psychological Research, 67(4), 244–252. doi:10.1007/s00426-002-0125-2.

    Article  PubMed  Google Scholar 

  23. Koch, I., & Prinz, W. (2002). Process interference and code overlap in dual-task performance. Journal of Experimental Psychology Human Perception and Performance, 28(1), 192–201. doi:10.1037//0096-1523.28.1.192.

    Article  Google Scholar 

  24. Levy, J., & Pashler, H. (2001). Is dual-task slowing instruction dependent? Journal of Experimental Psychology Human Perception and Performance, 27(4), 862–869. doi:10.1037/0096-1523.27.4.862.

    Article  PubMed  Google Scholar 

  25. Lien, M. C., & Proctor, R. W. (2000). Multiple spatial correspondence effects on dual-task performance. Journal of Experimental Psychology Human Perception and Performance, 26(4), 1260–1280. doi:10.1037/0096-1523.26.4.1260.

    Article  PubMed  Google Scholar 

  26. Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology Human Perception and Performance, 20(5), 1000–1014. doi:10.1037/0096-1523.20.5.1000.

    Article  PubMed  Google Scholar 

  27. Magen, H., & Cohen, A. (2005). Location specificity in response selection processes for visual stimuli. Psychonomic Bulletin and Review, 12, 541–548. doi:10.3758/BF03193802.

    Article  PubMed  Google Scholar 

  28. Magen, H., & Cohen, A. (2007). Modularity beyond perception: Evidence from single task interference paradigms. Cognitive Psychology, 55(1), 1–36. doi:10.1016/j.cogpsych.2006.09.003.

    Article  PubMed  Google Scholar 

  29. Magen, H., & Cohen, A. (2010). Modularity beyond perception: Evidence from the PRP paradigm. Journal of Experimental Psychology Human Perception and Performance, 36(2), 395–414. doi:10.1037/a0017174.

    Article  PubMed  Google Scholar 

  30. Matthews, T., Lefebvre, C., Fortier-Gauthier, U., Cohen, A., Israel, M., & Jolicoeur, P. (in preparation). The Lateralized Action Potential (LAP): An event-related potential related to the direction of a simple motor movement independently of effector side.

  31. McLeod, P. (1977). A dual task response modality effect: Support for multiprocessor models of attention. The Quarterly Journal of Experimental Psychology, 29(4), 651–667.

    Article  Google Scholar 

  32. Müsseler, J., Koch, I., & Wühr, P. (2005). Testing the boundary conditions for processing irrelevant location information: The cross-task Simon effect. European Journal of Cognitive Psychology, 17(5), 708–726. doi:10.1080/09541440540000068.

    Article  Google Scholar 

  33. Müsseler, J., Wühr, P., & Umiltá, C. (2006). Processing of irrelevant location information under dual-task conditions. Psychological Research, 70(6), 459–467. doi:10.1007/s00426-005-0010-x.

    Article  PubMed  Google Scholar 

  34. Nicoletti, R., & Umiltà, C. (1994). Attention shifts produce spatial stimulus codes. Psychological Research, 56(3), 144–150. doi:10.1007/BF00419701.

    Article  PubMed  Google Scholar 

  35. Pashler, H. (1991). Shifting visual attention and selecting motor responses: Distinct attentional mechanisms. Journal of Experimental Psychology Human Perception and Performance, 17(4), 1023–1040. doi:10.1037/0096-1523.17.4.1023.

    Article  PubMed  Google Scholar 

  36. Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220–244. doi:10.1037/0033-2909.116.2.220.

    Article  PubMed  Google Scholar 

  37. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35(1), 73–89. doi:10.1146/annurev-neuro-062111-150525.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40. doi:10.1016/0028-3932(87)90041-8.

    Article  PubMed  Google Scholar 

  39. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology General, 124(2), 207–231. doi:10.1037/0894-4105.20.6.675.

    Article  Google Scholar 

  40. Ruthruff, E., Van Selst, M., Johnston, J. C., & Remington, R. (2006). How does practice reduce dual-task interference: Integration, automatization, or just stage-shortening? Psychological Research, 70(2), 125–142. doi:10.1007/s00426-004-0192-7.

    Article  PubMed  Google Scholar 

  41. Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J., Kieras, D. E., & Meyer, D. E. (2001). Virtually perfect time sharing in dual-task performance: Uncorking the central cognitive bottleneck. Psychological Science, 12(2), 101–108. doi:10.1111/1467-9280.00318.

    Article  PubMed  Google Scholar 

  42. Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81(1), 174–176. doi:10.1037/h0027448.

    Article  PubMed  Google Scholar 

  43. Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. The Journal of Applied Psychology, 51(3), 300–304. doi:10.1037/h0020586.

    Article  PubMed  Google Scholar 

  44. Stelzel, C., Schumacher, E. H., Schubert, T., & D’Esposito, M. (2006). The neural effect of stimulus-response modality compatibility on dual-task performance: An fMRI study. Psychological Research, 70(6), 514–525. doi:10.1007/s00426-005-0013-7.

    Article  PubMed  Google Scholar 

  45. Stephan, D. N., & Koch, I. (2010). Central cross-talk in task switching: Evidence from manipulating input-output modality compatibility. Journal of Experimental Psychology Learning, Memory, and Cognition, 36(4), 1075–1081. doi:10.1037/a0019695.

    Article  PubMed  Google Scholar 

  46. Stephan, D. N., & Koch, I. (2011). The role of input-output modality compatibility in task switching. Psychological Research, 75(6), 491–498. doi:10.1007/s00426-011-0353-4.

    Article  PubMed  Google Scholar 

  47. Stephan, D. N., & Koch, I. (2015). Modality-specific effects on crosstalk in task switching: Evidence from modality compatibility using bimodal stimulation. Psychological Research,. doi:10.1007/s00426-015-0700-y.

    Google Scholar 

  48. Stoffer, T. H. (1991). Attentional focussing and spatial stimulus-response compatibility. Psychological Research, 53(2), 127–135. doi:10.1007/BF01371820.

    Article  PubMed  Google Scholar 

  49. Thomaschke, R., Hopkins, B., & Miall, R. C. (2012). The role of cue-response mapping in motorvisual impairment and facilitation: Evidence for different roles of action planning and action control in motorvisual dual-task priming. Journal of Experimental Psychology Human Perception and Performance, 38(2), 336–349. doi:10.1037/a0024794.

    Article  PubMed  Google Scholar 

  50. Van der Lubbe, R. H. J., & Abrahamse, E. L. (2011). The premotor theory of attention and the Simon effect. Acta Psychologica, 136(2), 259–264. doi:10.1016/j.actpsy.2010.09.007.

    Article  PubMed  Google Scholar 

  51. Van der Lubbe, R. H. J., Abrahamse, E. L., & De Kleine, E. (2012). The premotor theory of attention as an account for the Simon effect. Acta Psychologica, 140(1), 25–34. doi:10.1016/j.actpsy.2012.01.011.

    Article  PubMed  Google Scholar 

  52. Van Der Lubbe, R. H. J., Neggers, S. F. W., Verleger, R., & Kenemans, J. L. (2006). Spatiotemporal overlap between brain activation related to saccade preparation and attentional orienting. Brain Research, 1072(1), 133–152. doi:10.1016/j.brainres.2005.11.087.

    Article  PubMed  Google Scholar 

  53. Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400(6747), 867–869. doi:10.1038/23698.

    Article  PubMed  Google Scholar 

  54. Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology Human Perception and Performance, 29(1), 121–138. doi:10.1167/1.3.103.

    Article  PubMed  Google Scholar 

  55. Zimba, L. D., & Brito, C. F. (1995). Attention precuing and Simon effects: A test of the attention-coding account of the Simon effect. Psychological Research, 58(2), 102–118. doi:10.1007/BF00571099.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation under Grant 3/11 given to Asher Cohen. We thank the Iring Koch, Eric Ruthruff and Bernhard Hommel for their helpful comments on a prior draft of this paper. We also wish to thank Maya Inbar and Yaron Alon their assistance in running the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moran M. Israel.

Ethics declarations

Conflict of interest

All authors declare that they has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hebrew University of Jerusalem and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Israel, M.M., Jolicoeur, P. & Cohen, A. Spatial attention across perception and action. Psychological Research 82, 255–271 (2018). https://doi.org/10.1007/s00426-016-0820-z

Download citation