Skip to main content
Log in

Spatial attention across perception and action

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We hypothesize that a shared spatial attention mechanism is used for both perception and action. To this end we created a new dual-task version of the classical Simon task. In one task, the spatial-input task, associated with input spatial attention, participants named one shape out of two bilaterally presented colored shapes. In a second task, the spatial-output task, associated with output spatial attention, participants discriminated between high and low pitch tones by pressing either a left or a right key. In Experiment 1, input for both tasks appeared simultaneously, and participants were instructed not to prioritize either task. A between tasks Simon-like effect was found for responses to both tasks. Reaction times were shorter when the side of the relevant shape in the spatial-input task and the side of the correct response in the spatial-output task were congruent. In Experiment 2, we manipulated the stimulus-onset asynchrony (SOA) between the inputs for the two tasks and showed that the Simon-like effect remained intact at all SOAs. Experiment 3 was similar to Experiment 1 except that the vocal response for the spatial-input task was not speeded. A Simon-like effect was still observed. Experiment 4 was the same as Experiment 3 except that the non-speeded response for the spatial-input task was manual rather than vocal. No Simon-like effect was observed in this experiment. Our results support a shared spatial attention mechanism involved in the Simon effect and indicate that this spatial attention mechanism is shared by perception and action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It is important to distinguish between this claim and a different attention-related claim according to which the Simon effect is due to an attentional shift toward a location (e.g., Nicoletti & Umiltà, 1994). See Hommel (1993) and Zimba and Brito (1995), for a critical examination of this attentional shift hypothesis.

  2. We presented the two tasks in that order because this was the order used by Müsseler et al. (2005). To make sure that the same pattern of results would be obtained with a reversed order, we conducted another experiment in which the visual task appeared with (at 0 SOA), or before the tone task. All other aspects of this experiment were identical to those of Experiment 2. We obtained similar Simon-like effects with a minor difference (lack of congruency effect when the SOA was 450 ms). The planned comparisons within each task were as follows: congruency effect for the spatial input task: when the SOA was 0 ms [t(19) = 2.78, p = 0.0059, Cohen's d = 0.6]; when the SOA was 150 ms [t(19) = 1.83, p = 0.0418, Cohen's d = 0.41]; when the SOA was 450 ms [t(19) = 0.98, p = 0.1960, Cohen's d = 0.22].

    Congruency effect for the spatial output task: when the SOA was 0 ms [t(19) = 4.51, p = 0.0002, Cohen's d = 1.01]; when the SOA was 150 ms [t(19) = 2.98, p = 0.0041, Cohen's d = 0.68]; when the SOA was 450 ms [t(19) = 2.64, p = 0.0081, Cohen's d = 0.59].

  3. To make sure that the same pattern of results would be obtained regardless of the instructions, we conducted another experiment that was identical to Experiment 2 except that participants were explicitly instructed to respond first to the spatial output task. We obtained a similar Simon-like effect. The planned comparisons within each task were as follows: congruency effect for the spatial input task: when the SOA was 0 ms [t(19) = 2.35, p = 0.0272, Cohen's d = 0.38]; when the SOA was 150 ms [t(19) = 3.10, p = 0.0059, Cohen's d = 0.69]; when the SOA was 450 ms [t(19) = 2.09, p = 0.0431, Cohen's d = 0.29].

    Congruency effect for the spatial output task: when the SOA was 0 ms [t(19) = 2.57, p = 0.0186, Cohen's d = 0.42]; when the SOA was 150 ms [t(19) = 2.34, p = 0.0304, Cohen's d = 0.52]; when the SOA was 450 ms [t(19) = 2.29, p = 0.0333, Cohen's d = 0.35].

  4. The error rates in the spatial-input task were 0.047 in the congruent condition and 0.050 in the incongruent condition.

  5. The error rates in the spatial-input task were 0.005 in the congruent condition and 0.006 in the incongruent condition.

References

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation under Grant 3/11 given to Asher Cohen. We thank the Iring Koch, Eric Ruthruff and Bernhard Hommel for their helpful comments on a prior draft of this paper. We also wish to thank Maya Inbar and Yaron Alon their assistance in running the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moran M. Israel.

Ethics declarations

Conflict of interest

All authors declare that they has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Hebrew University of Jerusalem and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israel, M.M., Jolicoeur, P. & Cohen, A. Spatial attention across perception and action. Psychological Research 82, 255–271 (2018). https://doi.org/10.1007/s00426-016-0820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-016-0820-z

Navigation