Advertisement

Psychological Research

, Volume 81, Issue 6, pp 1201–1212 | Cite as

Do experts see it in slow motion? Altered timing of action simulation uncovers domain-specific perceptual processing in expert athletes

  • Carmelo M. VicarioEmail author
  • Stergios Makris
  • Cosimo Urgesi
Original Article

Abstract

Accurate encoding of the spatio-temporal properties of others’ actions is essential for the successful implementation of daily activities and, even more, for successful sportive performance, given its role in movement coordination and action anticipation. Here we investigated whether athletes are provided with special perceptual processing of spatio-temporal properties of familiar sportive actions. Basketball and volleyball players and novices were presented with short video-clips of free basketball throws that were partially occluded ahead of realization and were asked to judge whether a subsequently presented pose was either taken from the same throw depicted in the occluded video (action identification task) or temporally congruent with the expected course of the action during the occlusion period (explicit timing task). Results showed that basketball players outperformed the other groups in detecting action compatibility when the pose depicted earlier or synchronous, but not later phases of the movement as compared to the natural course of the action during occlusion. No difference was obtained for explicit estimations of timing compatibility. This leads us to argue that the timing of simulated actions in the experts might be slower than that of perceived actions (“slow-motion” bias), allowing for more detailed representation of ongoing actions and refined prediction abilities.

Keywords

Basketball Player Action Simulation Representational Momentum Volleyball Player Body Kinematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353–367.CrossRefPubMedGoogle Scholar
  2. Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931–948.CrossRefPubMedGoogle Scholar
  3. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefPubMedGoogle Scholar
  4. Barr, K., & Hall, C. (1992). The use of imagery by rowers. International Journal of Sport Psychology, 23, 243–261.Google Scholar
  5. Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37(5), 1569–1577.PubMedGoogle Scholar
  6. Blättler, C., Ferrari, V., Didierjean, A., van Elslande, P., & Marmèche, E. (2010). Can expertise modulate representational momentum? Visual Cognition, 18(9), 1253–1273.CrossRefGoogle Scholar
  7. Brattan, V. C., Baker, D. H., & Tipper, S. P. (2015). Spatiotemporal judgments of observed actions: Contrasts between first- and third-person perspectives after motor priming. Journal of Experimental Psychology Human Perception and Performance, 41, 1236–1246.CrossRefPubMedGoogle Scholar
  8. Briggs, G. G., & Nebes, R. D. (1975). Patterns of hand preference in a student population. Cortex, 11, 230–238.CrossRefPubMedGoogle Scholar
  9. Calvo-Merino, B., Ehrenberg, S., Leung, D., & Haggard, P. (2010). Experts see it all: configural effects in action observation. Psychological Research, 74, 400–406.CrossRefPubMedGoogle Scholar
  10. Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.CrossRefPubMedGoogle Scholar
  11. Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.CrossRefPubMedGoogle Scholar
  12. Chen, Y. H., Pizzolato, F., & Cesari, P. (2014). Time flies when we view a sport action. Experimental Brain Research, 232, 629–635.CrossRefPubMedGoogle Scholar
  13. Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18, 137–144.CrossRefPubMedGoogle Scholar
  14. Cross, E. S., Kraemer, D. J. M., De, A. F., Hamilton, A., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326.CrossRefPubMedGoogle Scholar
  15. Denis, M., Chevalier, N., & Eloi, S. (1985). Visual imagery and the use of mental practice in the development of motor skills. Canadian Journal of Applied Sport Sciences, 10(Suppl.), 4S–16SI.Google Scholar
  16. Fetterman, J.G. (2006). Time and number: Learning, psychophysics, stimulus control, and retention. In E.A. Wasserman & T.R. Zentall (Eds.), Comparative Cognition. Experimental explorations of animal intelligence (p. 290). Oxford University Press.Google Scholar
  17. Finke, R. A., & Freyd, J. J. (1985). Transformations of visual memory induced by implied motions of pattern elements. Journal of Experimental Psychology. Learning, Memory, and Cognition, 11, 780–794.CrossRefPubMedGoogle Scholar
  18. Finke, R. A., & Shyi, G. C. (1988). Mental extrapolation and representational momentum for complex implied motions. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14, 112–120.CrossRefPubMedGoogle Scholar
  19. Flach, R., Knoblich, G., & Prinz, W. (2004). The two-thirds power law in motion perception. Visual Cognition, 11, 461–481.CrossRefGoogle Scholar
  20. Freyd, J. J. (1983). The mental representation of movement when static stimuli are viewed. Perception and Psychophysics, 33, 575–581.CrossRefPubMedGoogle Scholar
  21. Freyd, J. J., & Finke, R. A. (1984). Facilitation of length discrimination using real and imaged context frames. American Journal of Psychology, 97(3), 323–341.CrossRefPubMedGoogle Scholar
  22. Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36, T22–T32.CrossRefPubMedGoogle Scholar
  23. Guillot, A., & Collet, C. (2005). Duration of mentally simulated movement: A review. Journal of Motor Behavior, 37(1), 10–20.CrossRefPubMedGoogle Scholar
  24. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomics Bullettin and Review, 12(5), 822–851.CrossRefGoogle Scholar
  25. Kerzel, D. (2006). Why eye movements and perceptual factors have to be controlled in studies on “representational momentum”. Psychonomics Bullettin and Review, 13(1), 166–173.CrossRefGoogle Scholar
  26. Macmillan, N. A., & Kaplan, H. L. (1985). Detection theory analysis of group data: estimating sensitivity from average hit and false-alarm rates. Psychological Bullettin, 98(1), 185–199.CrossRefGoogle Scholar
  27. Makris, S., & Urgesi, C. (2015). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive Affective Neuroscience, 10, 342–351.CrossRefPubMedGoogle Scholar
  28. McIntyre, T., & Moran, A. (1996). Imagery validation: How do we know athletes are imaging during mental practice. Journal of Applied Sport Psychology, 8, S132.Google Scholar
  29. Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 1076–1083.CrossRefPubMedGoogle Scholar
  30. Munger, M. P., & Minchew, J. H. (2002). Parallels between remembering and predicting an object’s location. Visual Cognition, 9(1–2), 177–194.CrossRefGoogle Scholar
  31. Munger, M., & Owens, T. R. (2004). Representational momentum and the flash-lag effect. Visual Cognition, 11(1), 81–103.CrossRefGoogle Scholar
  32. Nather, F. C., Bueno, J. L., Bigand, E., & Droit-Volet, S. (2011). Time changes with the embodiment of another’s body posture. PLoS One, 6, e19818.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Oishi, K., Kasai, T., & Maeshima, T. (2000). Autonomic response specificity during motor imagery. Journal of Physiology and Anthropology and Applied Human Science, 19, 255–261.Google Scholar
  34. Parkinson, J., Springer, A., & Prinz, W. (2011). Can you see me in the snow? Action simulation aids the detection of visually degraded human motion. The Quarterly Journal of Experimental Psychology, 64, 1463–1472.CrossRefPubMedGoogle Scholar
  35. Parkinson, J., Springer, A., & Prinz, W. (2012). Before, during and after you disappear: Aspects of timing and dynamic updating of the real-time action simulation of human motions. Psychological Research, 76, 421–433.CrossRefPubMedGoogle Scholar
  36. Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.CrossRefPubMedGoogle Scholar
  37. Sparenberg, P., Springer, A., & Prinz, W. (2012). Predicting others’ actions: Evidence for a constant time delay in action simulation. Psychological Research, 76(41–9), 2012.Google Scholar
  38. Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., et al. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.CrossRefPubMedGoogle Scholar
  39. Springer, A., Parkinson, J., & Prinz, W. (2013). Action simulation: time course and representational mechanisms. Frontiers in Psychology, 4, 1–20.CrossRefGoogle Scholar
  40. Stadler, W., Springer, A., Parkinson, J., & Prinz, W. (2012). Movement kinematics affect action prediction: comparing human to non-human point-light actions. Psychological Research, 76, 395–406.CrossRefPubMedGoogle Scholar
  41. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods Instruments Computers, 31(1), 137–149.CrossRefGoogle Scholar
  42. Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2013). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.CrossRefPubMedGoogle Scholar
  43. Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.CrossRefPubMedGoogle Scholar
  44. Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, S. M. (2012). Long- and short-term plastic modelling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.CrossRefPubMedGoogle Scholar
  45. Verfaillie, K., & Daems, A. (2002). Representing and anticipating human actions in vision. Visual Cognition, 9, 217–232.CrossRefGoogle Scholar
  46. Vicario, C. M., Bonní, S., & Koch, G. (2011a). Left hand dominance affects supra-second time processing. Frontiers in Integrative Neuroscience, 5, 65.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vicario, C. M., Martino, D., & Koch, G. (2013). Temporal accuracy and variability in the left and right posterior parietal cortex. Neuroscience, 245(121–8), 2013.Google Scholar
  48. Vicario, C. M., Martino, D., Pavone, E. F., & Fuggetta, G. (2011b). Lateral head turning affects temporal memory. Perceptual and Motor Skills, 113, 3–10.CrossRefPubMedGoogle Scholar
  49. Vicario, C. M., Pecoraro, P., Turriziani, P., Koch, G., Caltagirone, C., & Oliveri, M. (2008). Relativistic compression and expansion of experiential time in the left and right space. PLoS One, 3, e1716.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vicario, C. M., Rappo, G., Pepi, A., Pavan, A., & Martino, D. (2012). Temporal abnormalities in children with developmental dyscalculia. Developmental Neuropsychology, 37, 636–652.CrossRefPubMedGoogle Scholar
  51. Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Carmelo M. Vicario
    • 1
    • 2
    Email author
  • Stergios Makris
    • 3
  • Cosimo Urgesi
    • 1
    • 4
    • 5
  1. 1.Wolfson Centre for Clinical and Cognitive Neuroscience, School of PsychologyBangor UniversityBangorUK
  2. 2.School of PsychologyUniversity of TasmaniaTasmaniaAustralia
  3. 3.Department of PsychologyEdge Hill UniversityOrmskirkUK
  4. 4.Laboratorio di Neuroscienze CognitiveUniversità di UdineUdineItaly
  5. 5.Istituto di Ricovero e Cura a Carattere Scientifico “Eugenio Medea”Polo Friuli Venezia GiuliaPordenoneItaly

Personalised recommendations