Abstract
In a recent study, Kreitz et al. (Psychological Research 79:1034–1041, 2015) reported on a relationship between verbal working memory capacity and visuo-spatial attentional breadth. The authors hinted at attentional control to be the major link underlying this relationship. We put forward an alternative explanation by framing it within the context of a recent theory on serial order in memory: verbal item sequences entering in working memory are coded by adding a spatial context that can be derived from reading/writing habits. The observation by Kreitz et al. (Psychological Research 79:1034–1041, 2015) enriches this framework by suggesting that a larger visuo-spatial attentional breadth allows for internal coding of the verbal items in a more (spatially) distinct manner–thereby increasing working memory performance. As such, Kreitz et al. (Psychological Research 79:1034–1041, 2015) is the first study revealing a functional link between visuo-spatial attentional breadth and verbal working memory size, which strengthens spatial accounts of serial order coding in working memory.
Similar content being viewed by others
References
Abrahamse, E., van Dijck, J.-P., Majerus, S., & Fias, W. (2014). Finding the answer in space: the mental whiteboard hypothesis on serial order in working memory. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00932.
Anderson, J. R., & Matessa, M. (1997). A production system theory of serial memory. Psychological Review, 104(4), 728.
Ans, B., Carbonnel, S., & Valdois, S. (1998). A connectionist multiple-trace memory model for polysyllabic word reading. Psychological Review, 105(4), 678.
Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.
Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. doi:10.1038/nrn1201.
Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. Journal of the Optical Society of America A, 5(12), 2210–2219.
Bonato, M., Zorzi, M., & Umilta, C. (2012). When time is space: evidence from the mental time line. Neuroscience and Biobehavioral Reviews, 36, 2257–2273.
Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005.
Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: the visual attention span deficit hypothesis. Cognition, 104(2), 198–230.
Botvinick, M. M., & Watanabe, T. (2007). From numerosity to ordinal rank: a gain-field model of serial order representation in cortical working memory. Journal of Neuroscience, 27, 8636–8642.
Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539.
Brown, G. D., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127.
Burgess, N., & Hitch, G. J. (1999). Memory for serial order: a network model of the phonological loop and its timing. Psychological Review, 106(3), 551.
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. doi:10.1038/nrn755.
Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., et al. (2005). On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100.
Cowan, N., Li, D., Moffitt, A., Becker, T. M., Martin, E. A., Saults, J. S., et al. (2011). A neural region of abstract working memory. Journal of Cognitive Neuroscience, 23(10), 2852–2863.
Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713–758. doi:10.1037/a0019738.
De Belder, M., Abrahamse, E., Kerckhof, E., Fias, W., & van Dijck, J. P. (2015). Serial position markers in space: visuospatial priming of serial order working memory retrieval. PLOS One, 10(1), e0116469. doi:10.1371/journal.pone.0116469.
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.
Demoulin, C., & Kolinsky, R. (2015). Does learning to read shape verbal working memory? Psychonomic Bulletin and Review. doi:10.3758/s13423-015-0956-7.
Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. doi:10.1111/1467-8721.00160.
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134, 1694–1709.
Gobet, F. (2000). Some shortcomings of long-term working memory. British Journal of Psychology, 91(4), 551–570.
Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: a two-stage framework. Brain and Cognition, 79(3), 221–244.
Guida, A., & Lavielle-Guida, M. (2014). 2011 space odyssey: spatialization as a mechanism to code order allows a close encounter between memory expertise and classic immediate memory studies. Frontiers in Psychology, Cognition, 5, 573.
Guida, A., Leroux, A., Lavielle-Guida, M., & Noël, Y. (2015). A SPoARC in the dark: spatialization in verbal immediate memory. Cognitive Science. doi:10.1111/cogs.12316/full.
Hunt, R., & Worthen, J. B. (2006). Distinctiveness and memory. Oxford: Oxford University Press.
Hüttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional “spotlight” varies with differences in sports expertise. Journal of Experimental Psychology: Applied, 20(2), 147.
Hüttermann, S., Memmert, D., Simons, D. J., & Bock, O. (2013). Fixation strategy influences the ability to focus attention on two spatially separate objects. 10.1371/journal.pone.0065673.
Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.
Kane, M. J., Bleckley, M. K., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169–183.
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189–217.
Kiyonaga, A., & Egner, T. (2012). Working memory as internal attention: toward an integrative account of internal and external selection processes. Psychonomic Bulletin and Review, 20, 228–242.
Kreitz, C., Furley, P., Memmert, D., & Simons, D. J. (2015). Working-memory performance is related to spatial breadth of attention. Psychological Research, 79, 1034–1041.
Lewandowsky, S., & Farrell, S. (2008). Short-term memory: new data and a model. Psychology of Learning and Motivation, 49, 1–48.
Li, D., Christ, S. E., & Cowan, N. (2014). Domain-general and domain-specific functional networks in working memory. NeuroImage, 102, 646–656.
Maass, A., & Russo, A. (2003). Directional bias in the mental representation of spatial events: nature or culture? Psychological Science, 14, 296–301.
Macaluso, E., & Patria, F. (2007). Spatial re-orienting of visual attention along the horizontal or the vertical axis. Experimental Brain Research, 180, 23–34.
Majerus, S., Cowan, N., Péters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2014). Cross-modal decoding of neural patterns associated with working memory: evidence for attention-based accounts of working memory. Cerebral Cortex, bhu189.
Majerus, S., D’Argembeau, A., Perez, T. M., Belayachi, S., derLinden, M., Van Collette, F., et al. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22, 2570–2593.
Meegan, D. V., Purc-Stephenson, R., Honsberger, M. J., & Topan, M. (2004). Task analysis complements neuroimaging: an example from working memory research. Neuroimage, 21(3), 1026–1036.
Mitchell, J. P., Macrae, C. N., & Gilchrist, I. D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14(1), 95–103.
Molenberghs, P., Gillebert, C., Peeters, R., & Vandenberghe, R. (2008). Convergence between lesion-symptom mapping and fmri of spatially selective attention in the intact brain. Journal of Neuroscience, 28, 3359–3373.
Nairne, J. S., Neath, I., Serra, M., & Byun, E. (1997). Positional distinctiveness and the ratio rule in free recall. Journal of Memory and Language, 37(2), 155–166.
Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100.
Oberauer, K., Lange, E., & Engle, R. W. (2004). Working memory capacity and resistance to interference. Journal of Memory and Language, 51(1), 80–96.
Oberauer, K., & Lewandowsky, S. (2011). Modeling working memory: a computational implementation of the time-based resource-sharing theory. Psychonomic Bulletin and Review, 18(1), 10–45.
Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: an interference model of complex span. Psychonomic Bulletin and Review, 19(5), 779–819. doi:10.3758/s13423-012-0272-4.
Oberauer, K., Süß, H. M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 49–75). New York: Oxford University Press.
Owen, A. M., McMillan, K. M., Laird, A. R., Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. doi:10.1002/hbm.20131.
Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, 107, 7580–7585.
Pavani, F., Macaluso, E., Warren, J. D., Driver, J., & Griffiths, T. D. (2002). A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Current Biology, 12, 1584–1590.
Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: a meta-analysis. Psychonomic Bulletin and Review, 20(6), 1102–1113.
Sala, S. D., Darling, S., & Logie, R. (2010). Items on the left are better remembered. Quarterly Journal of Experimental Psychology, 63(5), 848–855.
Sanders, A. F. (1970). Some aspects of the selective process in the functional field of view. Ergonomics, 13, 101–117.
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin and Review, 16(2), 328–331. doi:10.3758/PBR.16.2.328.
Silk, T. J., Bellgrove, M. A., Wrafter, P., Mattingley, J. B., & Cunnington, R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. Neuroimage, 53, 718–724.
Spalek, T. M., & Hammad, S. (2005). The left-to-right bias in inhibition of return is due to the direction of reading. Psychological Science, 16(1), 15–18.
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154.
Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505.
Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: attention, memory, or both? A direct test of the dual-component model. Journal of Memory and Language, 62, 392–406.
van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. The Quarterly Journal of Experimental Psychology, 67, 1500–1513.
van Dijck, J. P., Abrahamse, E., Majerus, S., & Fias, W. (2013). Spatial attention interacts with serial order retrieval from verbal working memory. Psychological Science, 24, 1854–1859.
van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119.
Vandenberghe, R., & Gillebert, C. R. (2009). Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain. Behavioral Brain Research, 199, 171–182.
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751.
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.
Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1–2), 1–2.
Acknowledgments
Elger Abrahamse was supported by Research Foundation—Flanders under contract number 12C4715N.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Rights and permissions
About this article
Cite this article
Guida, A., van Dijck, JP. & Abrahamse, E. Distinctiveness as a function of spatial expansion in verbal working memory: comment on Kreitz, Furley, Memmert, and Simons (2015). Psychological Research 81, 690–695 (2017). https://doi.org/10.1007/s00426-016-0765-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00426-016-0765-2