Skip to main content
Log in

Distinctiveness as a function of spatial expansion in verbal working memory: comment on Kreitz, Furley, Memmert, and Simons (2015)

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In a recent study, Kreitz et al. (Psychological Research 79:1034–1041, 2015) reported on a relationship between verbal working memory capacity and visuo-spatial attentional breadth. The authors hinted at attentional control to be the major link underlying this relationship. We put forward an alternative explanation by framing it within the context of a recent theory on serial order in memory: verbal item sequences entering in working memory are coded by adding a spatial context that can be derived from reading/writing habits. The observation by Kreitz et al. (Psychological Research 79:1034–1041, 2015) enriches this framework by suggesting that a larger visuo-spatial attentional breadth allows for internal coding of the verbal items in a more (spatially) distinct manner–thereby increasing working memory performance. As such, Kreitz et al. (Psychological Research 79:1034–1041, 2015) is the first study revealing a functional link between visuo-spatial attentional breadth and verbal working memory size, which strengthens spatial accounts of serial order coding in working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahamse, E., van Dijck, J.-P., Majerus, S., & Fias, W. (2014). Finding the answer in space: the mental whiteboard hypothesis on serial order in working memory. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00932.

  • Anderson, J. R., & Matessa, M. (1997). A production system theory of serial memory. Psychological Review, 104(4), 728.

    Article  Google Scholar 

  • Ans, B., Carbonnel, S., & Valdois, S. (1998). A connectionist multiple-trace memory model for polysyllabic word reading. Psychological Review, 105(4), 678.

    Article  PubMed  Google Scholar 

  • Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. doi:10.1038/nrn1201.

  • Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: expanding the useful field of view. Journal of the Optical Society of America A, 5(12), 2210–2219.

    Article  Google Scholar 

  • Bonato, M., Zorzi, M., & Umilta, C. (2012). When time is space: evidence from the mental time line. Neuroscience and Biobehavioral Reviews, 36, 2257–2273.

    Article  PubMed  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005.

    Article  PubMed  Google Scholar 

  • Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: the visual attention span deficit hypothesis. Cognition, 104(2), 198–230.

    Article  PubMed  Google Scholar 

  • Botvinick, M. M., & Watanabe, T. (2007). From numerosity to ordinal rank: a gain-field model of serial order representation in cortical working memory. Journal of Neuroscience, 27, 8636–8642.

    Article  PubMed  Google Scholar 

  • Brown, G. D., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539.

    Article  PubMed  Google Scholar 

  • Brown, G. D., Preece, T., & Hulme, C. (2000). Oscillator-based memory for serial order. Psychological Review, 107(1), 127.

    Article  PubMed  Google Scholar 

  • Burgess, N., & Hitch, G. J. (1999). Memory for serial order: a network model of the phonological loop and its timing. Psychological Review, 106(3), 551.

    Article  Google Scholar 

  • Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73–101.

    Article  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. doi:10.1038/nrn755.

    Article  PubMed  Google Scholar 

  • Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Hismjatullina, A., et al. (2005). On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42–100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan, N., Li, D., Moffitt, A., Becker, T. M., Martin, E. A., Saults, J. S., et al. (2011). A neural region of abstract working memory. Journal of Cognitive Neuroscience, 23(10), 2852–2863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713–758. doi:10.1037/a0019738.

  • De Belder, M., Abrahamse, E., Kerckhof, E., Fias, W., & van Dijck, J. P. (2015). Serial position markers in space: visuospatial priming of serial order working memory retrieval. PLOS One, 10(1), e0116469. doi:10.1371/journal.pone.0116469.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.

    Article  Google Scholar 

  • Demoulin, C., & Kolinsky, R. (2015). Does learning to read shape verbal working memory? Psychonomic Bulletin and Review. doi:10.3758/s13423-015-0956-7.

  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. doi:10.1111/1467-8721.00160.

    Article  Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.

    Article  PubMed  Google Scholar 

  • Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134, 1694–1709.

    Article  PubMed  Google Scholar 

  • Gobet, F. (2000). Some shortcomings of long-term working memory. British Journal of Psychology, 91(4), 551–570.

    Article  PubMed  Google Scholar 

  • Guida, A., Gobet, F., Tardieu, H., & Nicolas, S. (2012). How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: a two-stage framework. Brain and Cognition, 79(3), 221–244.

    Article  PubMed  Google Scholar 

  • Guida, A., & Lavielle-Guida, M. (2014). 2011 space odyssey: spatialization as a mechanism to code order allows a close encounter between memory expertise and classic immediate memory studies. Frontiers in Psychology, Cognition, 5, 573.

    Google Scholar 

  • Guida, A., Leroux, A., Lavielle-Guida, M., & Noël, Y. (2015). A SPoARC in the dark: spatialization in verbal immediate memory. Cognitive Science. doi:10.1111/cogs.12316/full.

  • Hunt, R., & Worthen, J. B. (2006). Distinctiveness and memory. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Hüttermann, S., Memmert, D., & Simons, D. J. (2014). The size and shape of the attentional “spotlight” varies with differences in sports expertise. Journal of Experimental Psychology: Applied, 20(2), 147.

    PubMed  Google Scholar 

  • Hüttermann, S., Memmert, D., Simons, D. J., & Bock, O. (2013). Fixation strategy influences the ability to focus attention on two spatially separate objects. 10.1371/journal.pone.0065673.

  • Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Bleckley, M. K., Conway, A. R., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169–183.

    Article  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189–217.

    Article  Google Scholar 

  • Kiyonaga, A., & Egner, T. (2012). Working memory as internal attention: toward an integrative account of internal and external selection processes. Psychonomic Bulletin and Review, 20, 228–242.

    Article  Google Scholar 

  • Kreitz, C., Furley, P., Memmert, D., & Simons, D. J. (2015). Working-memory performance is related to spatial breadth of attention. Psychological Research, 79, 1034–1041.

    Article  PubMed  Google Scholar 

  • Lewandowsky, S., & Farrell, S. (2008). Short-term memory: new data and a model. Psychology of Learning and Motivation, 49, 1–48.

    Article  Google Scholar 

  • Li, D., Christ, S. E., & Cowan, N. (2014). Domain-general and domain-specific functional networks in working memory. NeuroImage, 102, 646–656.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maass, A., & Russo, A. (2003). Directional bias in the mental representation of spatial events: nature or culture? Psychological Science, 14, 296–301.

    Article  PubMed  Google Scholar 

  • Macaluso, E., & Patria, F. (2007). Spatial re-orienting of visual attention along the horizontal or the vertical axis. Experimental Brain Research, 180, 23–34.

    Article  PubMed  Google Scholar 

  • Majerus, S., Cowan, N., Péters, F., Van Calster, L., Phillips, C., & Schrouff, J. (2014). Cross-modal decoding of neural patterns associated with working memory: evidence for attention-based accounts of working memory. Cerebral Cortex, bhu189.

  • Majerus, S., D’Argembeau, A., Perez, T. M., Belayachi, S., derLinden, M., Van Collette, F., et al. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22, 2570–2593.

    Article  PubMed  Google Scholar 

  • Meegan, D. V., Purc-Stephenson, R., Honsberger, M. J., & Topan, M. (2004). Task analysis complements neuroimaging: an example from working memory research. Neuroimage, 21(3), 1026–1036.

    Article  PubMed  Google Scholar 

  • Mitchell, J. P., Macrae, C. N., & Gilchrist, I. D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14(1), 95–103.

    Article  PubMed  Google Scholar 

  • Molenberghs, P., Gillebert, C., Peeters, R., & Vandenberghe, R. (2008). Convergence between lesion-symptom mapping and fmri of spatially selective attention in the intact brain. Journal of Neuroscience, 28, 3359–3373.

    Article  PubMed  Google Scholar 

  • Nairne, J. S., Neath, I., Serra, M., & Byun, E. (1997). Positional distinctiveness and the ratio rule in free recall. Journal of Memory and Language, 37(2), 155–166.

    Article  Google Scholar 

  • Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100.

    Article  Google Scholar 

  • Oberauer, K., Lange, E., & Engle, R. W. (2004). Working memory capacity and resistance to interference. Journal of Memory and Language, 51(1), 80–96.

    Article  Google Scholar 

  • Oberauer, K., & Lewandowsky, S. (2011). Modeling working memory: a computational implementation of the time-based resource-sharing theory. Psychonomic Bulletin and Review, 18(1), 10–45.

    Article  PubMed  Google Scholar 

  • Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: an interference model of complex span. Psychonomic Bulletin and Review, 19(5), 779–819. doi:10.3758/s13423-012-0272-4.

    Article  PubMed  Google Scholar 

  • Oberauer, K., Süß, H. M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 49–75). New York: Oxford University Press.

    Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. doi:10.1002/hbm.20131.

    Article  PubMed  Google Scholar 

  • Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, 107, 7580–7585.

    Article  Google Scholar 

  • Pavani, F., Macaluso, E., Warren, J. D., Driver, J., & Griffiths, T. D. (2002). A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Current Biology, 12, 1584–1590.

    Article  PubMed  Google Scholar 

  • Redick, T. S., & Lindsey, D. R. (2013). Complex span and n-back measures of working memory: a meta-analysis. Psychonomic Bulletin and Review, 20(6), 1102–1113.

    Article  PubMed  Google Scholar 

  • Sala, S. D., Darling, S., & Logie, R. (2010). Items on the left are better remembered. Quarterly Journal of Experimental Psychology, 63(5), 848–855.

    Article  Google Scholar 

  • Sanders, A. F. (1970). Some aspects of the selective process in the functional field of view. Ergonomics, 13, 101–117.

    Article  PubMed  Google Scholar 

  • Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin and Review, 16(2), 328–331. doi:10.3758/PBR.16.2.328.

    Article  PubMed  Google Scholar 

  • Silk, T. J., Bellgrove, M. A., Wrafter, P., Mattingley, J. B., & Cunnington, R. (2010). Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus. Neuroimage, 53, 718–724.

    Article  PubMed  Google Scholar 

  • Spalek, T. M., & Hammad, S. (2005). The left-to-right bias in inhibition of return is due to the direction of reading. Psychological Science, 16(1), 15–18.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.

    Article  PubMed  Google Scholar 

  • Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28(2), 127–154.

    Article  Google Scholar 

  • Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505.

    Article  PubMed  Google Scholar 

  • Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: attention, memory, or both? A direct test of the dual-component model. Journal of Memory and Language, 62, 392–406.

    Article  Google Scholar 

  • van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. The Quarterly Journal of Experimental Psychology, 67, 1500–1513.

    Article  PubMed  Google Scholar 

  • van Dijck, J. P., Abrahamse, E., Majerus, S., & Fias, W. (2013). Spatial attention interacts with serial order retrieval from verbal working memory. Psychological Science, 24, 1854–1859.

    Article  PubMed  Google Scholar 

  • van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial–numerical associations. Cognition, 119(1), 114–119.

    Article  PubMed  Google Scholar 

  • Vandenberghe, R., & Gillebert, C. R. (2009). Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain. Behavioral Brain Research, 199, 171–182.

    Article  Google Scholar 

  • Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.

    Article  PubMed  Google Scholar 

  • Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1–2), 1–2.

    Google Scholar 

Download references

Acknowledgments

Elger Abrahamse was supported by Research Foundation—Flanders under contract number 12C4715N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Guida.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guida, A., van Dijck, JP. & Abrahamse, E. Distinctiveness as a function of spatial expansion in verbal working memory: comment on Kreitz, Furley, Memmert, and Simons (2015). Psychological Research 81, 690–695 (2017). https://doi.org/10.1007/s00426-016-0765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-016-0765-2

Keywords

Navigation