Advertisement

Psychological Research

, Volume 81, Issue 2, pp 415–431 | Cite as

The role of practice and strategy in mental rotation training: transfer and maintenance effects

  • Chiara Meneghetti
  • Ramona Cardillo
  • Irene C. Mammarella
  • Sara Caviola
  • Erika Borella
Original Article

Abstract

Research in the domain of spatial abilities is now focusing on whether spatial abilities can be trained, and whether this can produce gains and maintenance effects in other, untrained skills. The aim of the present study was to assess the benefit and maintenance effects of two types of mental rotation training, one based on mental rotation practice alone, the other combining mental rotation practice with the use of a spatial (rotation) strategy. Seventy-two females took part in the study: 24 practiced with a rotation task that involved comparing pairs of 3D objects [the mental rotation (MR) group], 24 were taught to use the rotation strategy while practicing with the rotation task [the strategy + mental rotation (S + MR) group], and 24 were involved in parallel non-spatial activities (the active control group). Transfer effects were sought on both untrained spatial tasks (testing object rotation and perspective taking) and fluid ability tasks; self-reported strategy use was also examined. Our results showed short-term benefits and maintenance effects in the MR and the S + MR groups in terms of their accuracy in both the MR tasks considered (a 3D same/different task, and the Mental Rotations Test). The S + MR group was more accurate at follow-up than at post-test in both MR tasks, and reported using the rotation strategy in association with the tasks; this group was also more accurate at follow-up than at pre-test in the perspective-taking and fluid intelligence tasks. These findings are discussed from the spatial cognition standpoint and with reference to the (rotation) training literature.

Keywords

Mental Rotation Spatial Ability Spatial Task Active Control Group Mental Rotation Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Borella, E., Carretti, B., Cantarella, A., Riboldi, F., Zavagnin, M., & De Beni, R. (2014). Benefits of training visuospatial working memory in young–old and old–old. Developmental Psychology, 50(3), 714–727. doi: 10.1037/a0034293.CrossRefPubMedGoogle Scholar
  2. Cattell, R. B. (1973). Measuring intelligence with the Culture Fair Tests: manual for Scales 2 and 3. Champaign: Institute for Personality and Ability Testing.Google Scholar
  3. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum. ISBN 9780805802832.Google Scholar
  4. Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.Google Scholar
  5. Freedman, R. J., & Rovegno, L. (1981). Ocular dominance, cognitive strategy, and sex differences in spatial ability. Perceptual and Motor Skills, 52, 651–654. doi: 10.2466/pms.1981.52.2.651.CrossRefPubMedGoogle Scholar
  6. Gluck, J., & Fitting, S. (2003). Spatial strategy selection: interesting incremental information. International Journal of Testing, 3, 293–308. doi: 10.1207/S15327574IJT0303_7.CrossRefGoogle Scholar
  7. Guilford, J. P., & Zimmerman, W. S. (1947). The Guilford-Zimmerman aptitude survey. Orange: Sheridan Psychological Services.Google Scholar
  8. Gyselinck, V., De Beni, R., Pazzaglia, F., Meneghetti, C., & Mondoloni, A. (2007). Working memory components and imagery instructions in the elaboration of a spatial mental model. Psychological Research, 71, 373–382. doi: 10.1007/s00426-006-0091-1.CrossRefPubMedGoogle Scholar
  9. Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2015). Do we really become smarter when our fluid-intelligence test scores improve? Intelligence, 48, 1–14. doi: 10.1016/j.intell.2014.10.005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151–176. doi: 10.1016/j.intell.2005.09.005.CrossRefGoogle Scholar
  11. Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175–191. doi: 10.1016/j.intell.2003.12.001.CrossRefGoogle Scholar
  12. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Heil, M., Rösler, F., Link, M., & Bajric, J. (1998). What is improved if a mental rotation task is repeated—the efficiency of memory access, or the speed of a transformation routine? Psychological Research, 61, 99–106. doi: 10.1007/s004260050016.CrossRefPubMedGoogle Scholar
  14. Jansen, P., & Lehmann, J. (2013). Mental rotation performance in soccer players and gymnasts in an object-based mental rotation task. Advances in Cognitive Psychology, 9, 92–98. doi: 10.2478/v10053-008-0135-8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Johnson, W., & Bouchard, T. (2005). The structure of human intelligence: it is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393–416. doi: 10.1016/j.intell.2004.12.002.CrossRefGoogle Scholar
  16. Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35, 211–223. doi: 10.1016/j.intell.2006.07.009.CrossRefGoogle Scholar
  17. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory and Cognition, 29, 745–756. doi: 10.3758/BF03200477.CrossRefPubMedGoogle Scholar
  18. Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: the role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23(1), 77–94. doi: 10.1007/BF03173141.CrossRefGoogle Scholar
  19. Labate, E., Pazzaglia, F., & Hegarty, M. (2014). What working memory subcomponents are needed in the acquisition of survey knowledge? Evidence from direction estimation and shortcut tasks. Journal of Environmental Psychology, 37, 73–79. doi: 10.1016/j.jenvp.2013.11.007.CrossRefGoogle Scholar
  20. Lawton, C. A. (2010). Gender, spatial abilities, and wayfinding. In D. Chrisler & D. McCreary (Eds.), Handbook of gender research in psychology (pp. 317–341). New York: Springer.CrossRefGoogle Scholar
  21. Leone, G., Taine, M. C., & Droulez, J. (1993). The influence of long-term practice on mental rotation of 3-D objects. Cognitive Brain Research, 1, 241–255. doi: 10.1016/0926-6410(93)90008-S.CrossRefPubMedGoogle Scholar
  22. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56, 1479–1498. doi: 10.2307/1130467.CrossRefPubMedGoogle Scholar
  23. Lubinski, D. (2010). Spatial ability and STEM: a sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344–351. doi: 10.1016/j.paid.2010.03.022.CrossRefGoogle Scholar
  24. Martínez, K., Burgaleta, M., Román, F. J., Escorial, S., Shih, P. C., Quiroga, M. Á., & Colom, R. (2011). Can fluid intelligence be reduced to ‘simple’ short-term storage? Intelligence, 39(6), 473–480. doi: 10.1016/j.intell.2011.09.001.CrossRefGoogle Scholar
  25. Martínez, K., & Colom, R. (2009). Working memory capacity and processing efficiency predict fluid but not crystallized and spatial intelligence: evidence supporting the neural noise hypothesis. Personality and Individual Differences, 46, 281–286. doi: 10.1016/j.paid.2008.10.012.CrossRefGoogle Scholar
  26. Meneghetti, C., Borella, E., & Pazzaglia, F. (2015). Mental rotation training: transfer and maintenance effects on spatial abilities. Psychological Research,. doi: 10.1007/s00426-014-0644-7.Google Scholar
  27. Meneghetti, C., De Beni, R., Gyselinck, V., & Pazzaglia, F. (2013). The joint role of spatial ability and imagery strategy in sustaining the learning of spatial descriptions under spatial interference. Learning and Individual Differences, 24, 32–41. doi: 10.1016/j.lindif.2012.12.021.CrossRefGoogle Scholar
  28. Meneghetti, C., Ronconi, L., Pazzaglia, F., & De Beni, R. (2014). Spatial mental representations derived from spatial descriptions: the predicting and mediating roles of spatial preferences, strategies, and abilities. British Journal of Psychology, 105, 295–315. doi: 10.1111/bjop.12038.CrossRefPubMedGoogle Scholar
  29. Moè, A., Meneghetti, C., & Cadinu, M. (2009). Women and mental rotation: incremental theory and spatial strategy use enhance performance. Personality and Individual Differences, 46, 187–191. doi: 10.1016/j.paid.2008.09.030.CrossRefGoogle Scholar
  30. Moreau, D. (2013). Differentiating two- from three-dimensional mental rotation training effects. Quarterly Journal of Experimental Psychology, 66, 1399–1413. doi: 10.1080/17470218.2012.744761.CrossRefGoogle Scholar
  31. Morris, S. B., & DeShon, R. P. (2002). Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods, 7, 105–125. doi: 10.1037//1082-989X.7.1.105.CrossRefPubMedGoogle Scholar
  32. Pazzaglia, F., & Moè, A. (2013). Cognitive styles and mental rotation ability in map learning. Cognitive Processing, 14, 391–399. doi: 10.1007/s10339-013-0572-2.CrossRefPubMedGoogle Scholar
  33. Peters, M., & Battista, C. (2008). Applications of mental rotation figures of the Shepard and Metzler type and description of a Mental Rotation Stimulus Library. Brain and Cognition, 66, 260–264. doi: 10.1016/j.bandc.2007.09.003.CrossRefPubMedGoogle Scholar
  34. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test: different versions and factors that affect performance. Brain and Cognition, 28, 39–58. doi: 10.1006/brcg.1995.1032.CrossRefPubMedGoogle Scholar
  35. Raven, J. C., Raven, J., & Court, J. H. (1998). Manual for Raven’s Progressive Matrices and Vocabulary Scales. Section 4: advanced progressive matrices. San Antonio: Pearson.Google Scholar
  36. Sheldon, T. (1992). Familiarity effects in visual comparison tasks and their implications for studying human intelligence. Journal of Experimental Psychology Learning Memory and Cognition, 18, 577–594. doi: 10.1037/0278-7393.18.3.577.CrossRefGoogle Scholar
  37. Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18, 442–449. doi: 10.1037/0894-4105.18.3.442.CrossRefPubMedGoogle Scholar
  38. Shepard, R. N., & Feng, C. A. (1972). A chronometric study of mental paper folding. Cognitive Psychology, 3, 228–243. doi: 10.1016/0010-0285(72)90005-9.CrossRefGoogle Scholar
  39. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703. doi: 10.1126/science.171.3972.701.CrossRefPubMedGoogle Scholar
  40. Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: the case of video game players. Applied Cognitive Psychology, 16, 97–115. doi: 10.1002/acp.759.CrossRefGoogle Scholar
  41. Stieff, M., Dixon, B., Ryu, M., Kumi, B. C., & Hegarty, M. (2014). Strategy training eliminates sex differences in STEM spatial problem solving. Journal of Educational Psychology, 106, 390–402. doi: 10.1037/a0034823.CrossRefGoogle Scholar
  42. Stransky, D., Wilcox, L. M., & Dubrowski, A. (2010). Mental rotation: cross-task training and generalization. Journal of Experimental Psychology: Applied, 4, 349–360. doi: 10.1037/a0021702.Google Scholar
  43. Taylor, H. A., Naylor, S. J., & Chechile, N. A. (1999). Goal-specific influences on the representation of spatial perspective. Memory and Cognition, 27, 309–319. doi: 10.3758/BF03211414.CrossRefPubMedGoogle Scholar
  44. Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: gender differences in growth patterns. Applied Cognitive Psychology, 22, 996–1013. doi: 10.1002/acp.1420.CrossRefGoogle Scholar
  45. Thurstone, T. G., & Thurstone, L. L. (1963). Primary mental ability. Chicago: Science Research Associates.Google Scholar
  46. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013a). The malleability of spatial skills: a meta-analysis of training studies. Psychological Bulletin, 139, 352–402. doi: 10.1037/a0028446.CrossRefPubMedGoogle Scholar
  47. Uttal, D. H., Miller, D. I., & Newcombe, N. S. (2013b). Exploring and enhancing spatial thinking: links to achievement in science, technology, engineering, and mathematics? Current Directions in Psychological Science, 22, 367–373. doi: 10.1177/0963721413484756.CrossRefGoogle Scholar
  48. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of 3-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604. doi: 10.2466/pms.1978.47.2.599.CrossRefPubMedGoogle Scholar
  49. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270. doi: 10.1037/0033-2909.117.2.250.CrossRefPubMedGoogle Scholar
  50. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835. doi: 10.1037/a0016127.CrossRefGoogle Scholar
  51. Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin and Review, 15, 763–771. doi: 10.3758/PBR.15.4.763.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chiara Meneghetti
    • 1
  • Ramona Cardillo
    • 2
  • Irene C. Mammarella
    • 2
  • Sara Caviola
    • 2
  • Erika Borella
    • 1
  1. 1.Department of General PsychologyUniversity of PadovaPaduaItaly
  2. 2.Department of Developmental and Social PsychologyUniversity of PadovaPaduaItaly

Personalised recommendations