Psychological Research

, Volume 80, Issue 3, pp 389–398 | Cite as

Voluntary eye movements direct attention on the mental number space

Original Article

Abstract

Growing evidence suggests that orienting visual attention in space can influence the processing of numerical magnitude, with leftward orienting speeding up the processing of small numbers relative to larger ones and the converse for rightward orienting. The manipulation of eye movements is a convenient way to direct visuospatial attention, but several aspects of the complex relationship between eye movements, attention orienting and number processing remain unexplored. In a previous study, we observed that inducing involuntary, reflexive eye movements by means of optokinetic stimulation affected number processing only when numerical magnitude was task relevant (i.e., during magnitude comparison, but not during parity judgment; Ranzini et al., in J Cogn Psychol 27, 459–470, (2015). Here, we investigated whether processing of task-irrelevant numerical magnitude can be modulated by voluntary eye movements, and whether the type of eye movements (smooth pursuit vs. saccades) would influence this interaction. Participants tracked with their gaze a dot while listening to a digit. The numerical task was to indicate whether the digit was odd or even through non-spatial, verbal responses. The dot could move leftward or rightward either continuously, allowing tracking by smooth pursuit eye movements, or in discrete steps across a series of adjacent locations, triggering a sequence of saccades. Both smooth pursuit and saccadic eye movements similarly affected number processing and modulated response times for large numbers as a function of direction of motion. These findings suggest that voluntary eye movements redirect attention in mental number space and highlight that eye movements should play a key factor in the investigation of number–space interactions.

References

  1. Adler, S.A., Bala, J., & Krauzlis, R.J. (2002). Primacy of spatial information in guiding target selection for pursuit and saccades. Journal of Vision, 2, 627–644. CrossRefPubMedGoogle Scholar
  2. Aiello, M., Jacquin-Courtois, S., Merola, S., Ottaviani, T., Tomaiuolo, F., Bueti, D., … Doricchi, F. (2012). No inherent left and right side in human ‘mental number line’: Evidence from right brain damage. Brain, 135, 2492–2505.CrossRefPubMedGoogle Scholar
  3. Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 46–53.CrossRefPubMedGoogle Scholar
  4. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–609.PubMedGoogle Scholar
  5. Basso, M. A., Krauzlis, R. J., & Wurtz, R. H. (2000). Activation and inactivation of rostral superior colliculus neurons during smooth-pursuit eye movements in monkeys. Journal of Neurophysiology, 84, 892–908.PubMedGoogle Scholar
  6. Berger, A., Henik, A., & Rafal, R. (2005). Competition between endogenous and exogenous orienting of visual attention. Journal of Experimental Psychology: General, 134, 207–221.CrossRefGoogle Scholar
  7. Blini, E., Cattaneo, Z., & Vallar, G. (2013). Different effects of numerical magnitude on visual and proprioceptive reference frames. Frontiers in Psychology, 4, 190.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonato, M., Priftis, K., Marenzi, R., & Zorzi, M. (2008). Modulation of hemispatial neglect by directional and numerical cues in the line bisection task. Neuropsychologia, 46, 426–433.CrossRefPubMedGoogle Scholar
  9. Bonato, M., Priftis, K., Marenzi, R., & Zorzi, M. (2009). Normal and impaired reflexive orienting of attention following central non-predictive cues. Journal of Cognitive Neuroscience, 21, 745–759.CrossRefPubMedGoogle Scholar
  10. Bremmer, F., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. Jouranl of Neurophysiology, 77, 962–977.Google Scholar
  11. Casarotti, M., Lisi, M., Umiltà, C., & Zorzi, M. (2012). Paying attention through eye movements: A computational investigation of the premotor theory of spatial attention. Journal of Cognitive Neuroscience, 24, 1519–1531.CrossRefPubMedGoogle Scholar
  12. Casarotti, M., Michielin, M., Zorzi, M., & Umiltà, C. (2007). Temporal order judgment reveals how number magnitude affects visuospatial attention. Cognition, 102(1), 101–117.CrossRefPubMedGoogle Scholar
  13. Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., … Shulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron, 21, 761–773.CrossRefPubMedGoogle Scholar
  14. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–297.CrossRefPubMedGoogle Scholar
  15. Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306–324.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Corbetta, M., & Shulman, G. L. (2002). Control of goal directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.CrossRefPubMedGoogle Scholar
  17. Cutini, S., Scarpa, F., Scatturin, P., Dell’Acqua, R., & Zorzi, M. (2014). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex, 24(2), 444-451.CrossRefPubMedGoogle Scholar
  18. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRefGoogle Scholar
  19. Di Luca, S., Pesenti, M., Vallar, G., & Girelli, L. (2013). Numbers reorient visuo-spatial attention during cancellation tasks. Experimental Brain Research, 225, 549–557.CrossRefPubMedGoogle Scholar
  20. Dodd, M. D., Van der Stigchel, S., Adil Leghari, M., Fung, G., & Kingstone, A. (2008). Attentional SNARC: There’s something special about numbers (let us count the ways). Cognition, 108, 810–818.CrossRefPubMedGoogle Scholar
  21. Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences of the United States of America, 103, 7192–7197.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57, 822–826.CrossRefPubMedGoogle Scholar
  23. Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.CrossRefPubMedGoogle Scholar
  25. Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51, 91–97.CrossRefPubMedGoogle Scholar
  26. Galfano, G., Rusconi, E., & Umiltà, C. (2006). Number magnitude orients attention, but not against one’s will. Psychonomic Bulletin & Review, 13, 869–874.CrossRefGoogle Scholar
  27. Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal–spatial and visuospatial coding of number–space interactions. Journal of Experimental Psychology: General, 139, 180–190.CrossRefGoogle Scholar
  28. Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: A review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42, 543–565.CrossRefGoogle Scholar
  29. Grade, S., Lefèvre, N., & Pesenti, M. (2013). Influence of gaze observation on random number generation. Experimental Psychology, 60, 122–130.CrossRefPubMedGoogle Scholar
  30. Grant, E. R., & Spivey, M. J. (2003). Eye movements and problem solving guiding attention guides thought. Psychological Science, 14, 462–466.CrossRefPubMedGoogle Scholar
  31. Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition: Evidence from visual neglect. Trends in Cognitive Sciences, 7, 125–133.CrossRefPubMedGoogle Scholar
  32. Hartmann, M. (2015). Numbers in the eye of the beholder: What do eye movements reveal about numerical cognition? Cognitive Processing, 1, 245–248.CrossRefGoogle Scholar
  33. Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: Evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Counting is a spatial process: Evidence from eye movements. Psychological Research. doi:10.1007/s00426-015-0722-5
  35. Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128, 225–237.CrossRefPubMedGoogle Scholar
  36. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.CrossRefPubMedGoogle Scholar
  37. Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of Neuroscience, 25, 4593–4604.CrossRefPubMedGoogle Scholar
  38. Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585.CrossRefPubMedGoogle Scholar
  39. Kramer, P., Stoianov, I., Umiltà, C., & Zorzi, M. (2011). Interactions between perceptual and numerical space. Psychonomic Bulletin & Review, 18, 722–728.CrossRefGoogle Scholar
  40. Krauzlis, R. J. (2004). Recasting the smooth pursuit eye movement system. Journal of Neurophysiology, 91(2), 591–603. doi:10.1152/jn.00801.2003.CrossRefPubMedGoogle Scholar
  41. Krauzlis, R. J., & Miles, F. A. (1996). Release of fixation for pursuit and saccades in humans: Evidence for shared inputs acting on different neural substrates. Journal of Neurophysiology, 76, 2822–2833.PubMedGoogle Scholar
  42. Krauzlis, R. J., Zivotofsky, A. Z., & Miles, F. A. (1999). Target selection for pursuit and saccadic eye movements in humans. Journal of Cognitive Neuroscience, 11, 641–649.CrossRefPubMedGoogle Scholar
  43. Lisberger, S. G., Morris, E. J., & Tychsen, L. (1987). Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annual Review of Neuroscience, 10, 97–129.CrossRefPubMedGoogle Scholar
  44. Loetscher, T., Bockisch, C. J., & Brugger, P. (2008). Looking for the answer: The mind’s eye in number space. Neuroscience, 151, 725–729.CrossRefPubMedGoogle Scholar
  45. Loetscher, T., Bockisch, C. J., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20, R264–R265.CrossRefPubMedGoogle Scholar
  46. Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. Quarterly Journal of Experimental Psychology, 67 (8), 1514-1526.CrossRefGoogle Scholar
  47. Moore, T., Armstrong, K. M., & Fallah, M. (2003). Visuomotor origins of covert spatial attention. Neuron, 40, 671–683.CrossRefPubMedGoogle Scholar
  48. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.CrossRefPubMedGoogle Scholar
  49. Myachykov, A., Ellis, R., Cangelosi, A., & Fischer, M. H. (2016). Ocular drift along the mental number line. Psychological Research. doi:10.1007/s00426-015-0731-4
  50. Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29, 1631–1647.CrossRefPubMedGoogle Scholar
  51. Nicholls, M. E. R., Loftus, A. M., & Gevers, W. (2008). Look, no hands: A perceptual task shows that number magnitude induces shifts of attention. Psychonomic Bulletin & Review, 15, 413–418.CrossRefGoogle Scholar
  52. Pizzamiglio, L., Antonucci, G., Guariglia, C., Judica, A., Montenero, P., Razzano, C., & Zoccolotti, P. (1992). Cognitive rehabilitation of the hemineglect disorders in chronic patients with unilateral right brain damage. Journal of Clinical and Experimental Neuropsychology, 14, 901–923.CrossRefPubMedGoogle Scholar
  53. Pizzamiglio, L., Frasca, R., Guariglia, C., Incoccia, C., & Antonucci, G. (1990). Effect of optokinetic stimulation in patients with visual neglect. Cortex, 26, 535–541.CrossRefPubMedGoogle Scholar
  54. Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 2–25.Google Scholar
  55. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Reviews in Neuroscience, 13, 25–42.CrossRefGoogle Scholar
  56. Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18, 680–688.CrossRefPubMedGoogle Scholar
  57. Prifts, K., Pitteri, M., Meneghello, F., Umiltà, C., & Zorzi, M. (2012). Optokinetic stimulation modulates neglect for the number space: Evidence from mental number interval bisection. Frontiers in Human Neuroscience, 6, 23.Google Scholar
  58. Ranzini, M., Dehaene, S., Piazza, M., & Hubbard, E. M. (2009). Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues. Neuropsychologia, 47, 2615–2624.CrossRefPubMedGoogle Scholar
  59. Ranzini, M., Lisi, M., Blini, E. A., Pitteri, M., Treccani, B., Priftis, K., & Zorzi, M. (2015). Larger, smaller, odd or even? Task-specific effects of optokinetic stimulation on the mental number space. Journal of Cognitive Psychology, 27(4), 459–470.CrossRefGoogle Scholar
  60. Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in Human Neuroscience, 5, 147.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278.CrossRefGoogle Scholar
  62. Ristic, J., Wright, A., & Kingstone, A. (2006). The number line reflects top-down control. Psychonomic Bulletin & Review, 13(5), 862–868.CrossRefGoogle Scholar
  63. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltà, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1), 31–40.CrossRefPubMedGoogle Scholar
  64. Ruiz Fernández, S., Rahona, J. J., Hervás, G., Vázquez, G., & Ulrich, R. (2011). Number magnitude determines gaze direction: Spatial–numerical association in a free-choice task. Cortex, 5, 617–620.CrossRefGoogle Scholar
  65. Schneider, E., Maruyama, M., Dehaene, S., & Sigman, M. (2012). Eye gaze reveals a fast, parallel extraction of the syntax of arithmetic formulas. Cognition, 125, 475–490.CrossRefPubMedGoogle Scholar
  66. Schwarz, W., & Keus, I. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with manual and saccadic responses. Perception and Psychophysics, 66, 651-664.Google Scholar
  67. Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits of both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328–331.CrossRefGoogle Scholar
  68. Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D. D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.CrossRefPubMedGoogle Scholar
  69. Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research, 65(235), 241.Google Scholar
  70. Stoianov, I., Kramer, P., Umiltà, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106, 770–779.CrossRefPubMedGoogle Scholar
  71. Tanaka, M., & Lisberger, S. G. (2001). Regulation of the gain of visually guided smooth-pursuit eye movements by frontal cortex. Nature, 409, 191–194.CrossRefPubMedGoogle Scholar
  72. Tanaka, M., & Lisberger, S. G. (2002). Role of arcuate frontal cortex of monkeys in smooth pursuit eye movements. I. Basic response properties to retinal image motion and position. Journal of Neurophysiology, 87, 2684–2699.PubMedPubMedCentralGoogle Scholar
  73. Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General, 123, 34–80.CrossRefGoogle Scholar
  74. Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: Evidence from neglect and pseudoneglect. Experimental Brain Research, 192, 561–569.CrossRefPubMedGoogle Scholar
  75. Van Dijck, J.-P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113, 248–253.CrossRefPubMedGoogle Scholar
  76. Van Dijck, J.-P., Gevers, W., Lafosse, C., & Fias, W. (2012). The heterogeneous nature of number–space interactions. Frontiers in Human Neuroscience, 5, 182.PubMedPubMedCentralGoogle Scholar
  77. Yu, X., Liu, J., Li, D., Cui, J., & Zhou, X. (2015). Dynamic mental number line in simple arithmetic. Psychological Research. doi:10.1007/s00426-015-0730-5.
  78. Zorzi, M., Bonato, M., Treccani, B., Scalambrin, G., Marenzi, R., & Priftis, K. (2012). Neglect impairs explicit processing of the mental number line. Frontiers in Human Neuroscience, 6, 125.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417, 138–139.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre de Recherche Cognition & Neurosciences (CRCN) Université Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Laboratoire Psychologie de la PerceptionUniversité Paris Descartes & CNRS (UMR 8242)ParisFrance
  3. 3.Department of General Psychology and Center for Cognitive NeuroscienceUniversity of PadovaPaduaItaly
  4. 4.IRCCS San Camillo Hospital FoundationLido-VeniceItaly

Personalised recommendations