Skip to main content
Log in

Observation and physical practice: different practice contexts lead to similar outcomes for the acquisition of kinematic information

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This study differentiated the contributions of physical and observational practice to the learning of a single-limb multi-joint coordination pattern. Three groups (physical-practice, observation-practice, observation-physical) practiced for 2 days and were given two performance tests 24 h after the second practice session. The performance tests revealed that physical and observational practice contributed similarly to identifying and using kinematic information related to the relative motion direction between joints (lead/lag relationship) and to the to-be-learned relative phase pattern (ϕ = 90°). Physical practice resulted in more stable coordination during performance tests and in the ability to produce different joint amplitudes with less variability. A serendipitous finding was that maximum elbow flexion (point of movement reversal) emerged as a kinematic event around which elbow and wrist coordination were organized. Movement reversals often serve to anchor the movement dynamics, and this anchoring effect was evident following both physical and observational practice, yet physical practice resulted in an advantage with regard to this anchor point on several kinematic measures. The results are discussed within the context of contemporary behavioral theories (coordination dynamics, visual perception perspective) of observational learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The physical-practice participant that performed poorly during both performance tests showed a significant improvement in performance with practice. No explanation for poor performance during the performance tests is readily available. However, both the physical-practice participant and observer-practice participant that performed poorly based on the relative phase measures did perform very similar to the other participants in their groups based on joint amplitudes and harmonicity measures.

References

  • Al-Abood, S. A., Davids, K., & Bennett, S. J. (2001a). Specificity of task constraints and effects of visual demonstrations and verbal instructions in directing learners’ search during skill acquisition. Journal of Motor Behavior, 33(3), 295–305.

    Article  PubMed  Google Scholar 

  • Al-Abood, S. A., Davids, K., Bennett, S. J., Ashford, D., & Marin, M. M. (2001b). Effects of manipulating relative and absolute motion information during observational learning of an aiming task. Journal of Sports Sciences, 19, 507–520.

    Article  PubMed  Google Scholar 

  • Andrieux, M., & Proteau, L. (2013). Observation learning of a motor task: Who and when? Experimental Brain Research, 229(1), 125–137. doi:10.1007/s00221-013-3598-x.

    Article  PubMed  Google Scholar 

  • Andrieux, M., & Proteau, L. (2014). Mixed observation favors motor learning through better estimation of the model’s performance. Experimental Brain Research, 232(10), 3121–3132. doi:10.1007/s00221-014-4000-3.

    Article  PubMed  Google Scholar 

  • Badets, A., & Blandin, Y. (2010). Feedback schedules for motor-skill learning: The similarities and differences between physical and observational practice. Journal of Motor Behavior, 42(4), 257–268.

    Article  PubMed  Google Scholar 

  • Bingham, G. P., Schmidt, R. C., & Zaal, F. T. J. M. (1999). Visual perception of the relative phasing of human limb movements. Perception and Psychophysics, 61(2), 246–258.

    Article  PubMed  Google Scholar 

  • Bingham, G. P., Zaal, F., Shull, J. A., & Collins, D. R. (2001). The effect of frequency on the visual perception of relative phase and phase variability of two oscillating objects. Experimental Brain Research, 136(4), 543–552. doi:10.1007/s002210000610.

    Article  PubMed  Google Scholar 

  • Bird, G., Osman, M., Saggerson, A., & Heyes, C. (2005). Sequence learning by action, observation and action observation. British Journal of Psychology, 96, 371–388. doi:10.1348/000712605x47440.

    Article  PubMed  Google Scholar 

  • Breslin, G., Hodges, N. J., Williams, A. M., Curran, W., & Kremer, J. (2005). Modelling relative motion to facilitate intra-limb coordination. Human Movement Science, 24, 446–463.

    Article  PubMed  Google Scholar 

  • Breslin, G., Hodges, N. J., Williams, A. M., Kremer, J., & Curran, W. (2006). A comparison of intra- and inter-limb relative motion information in modeling a novel motor skill. Human Movement Science, 25, 753–766.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J. (2013). Flexibility in the control of rapid aiming actions. Experimental Brain Research, 229(1), 47–60. doi:10.1007/s00221-013-3589-y.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J. (2015). Perceptual estimates of motor skill proficiency are constrained by the stability of coordination patterns. Journal of Motor Behavior. doi:10.1080/00222895.2015.1008687.

    PubMed  Google Scholar 

  • Buchanan, J. J., & Dean, N. (2010). Specificity in practice benefits learning in novice models and variability in demonstration benefits observational practice. Psychological Research, 74, 313–320.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., & Dean, N. (2014). Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts. Acta Psychologica, 146, 19–27.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., & Kelso, J. A. S. (1993). Posturally induced transitions in rhythmic multijoint limb movements. Experimental Brain Research, 94, 131–142.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., Park, J. H., Ryu, Y. U., & Shea, C. H. (2003). Discrete and cyclical units of action in a mixed target pair aiming task. Experimental Brain Research, 150, 473–489.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., Park, J. H., & Shea, C. H. (2006). Target width scaling in a repetitive aiming task: Switching between cyclical and discrete units of action. Experimental Brain Research, 175, 710–725.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., Ramos, J., & Robson, N. (2015). The perception–action dynamics of action competency are altered by both physical and observational training. Experimental Brain Research, 233, 1289–1305. doi:10.1007/s00221-015-4207-y.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., Ryu, Y. U., Zihlman, K., & Wright, D. A. (2008). Observational practice of a relative phase pattern but not an amplitude ratio in a multijoint task. Experimental Brain Research, 191, 157–169.

    Article  PubMed  Google Scholar 

  • Buchanan, J. J., & Wright, D. L. (2011). Generalization of action knowledge following observational learning. Acta Psychologica, 136, 167–178.

    Article  PubMed  Google Scholar 

  • Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3–28.

    Article  Google Scholar 

  • Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910. doi:10.1016/j.cub.2006.07.065.

    Article  PubMed  Google Scholar 

  • Celnik, P., Webster, B., Glasser, D. M., & Cohen, L. G. (2008). Effects of action observation on physical training after stroke. Stroke, 39(6), 1814–1820. doi:10.1161/strokeaha.107.508184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross, E. S., Hamilton, A., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. Neuroimage, 31(3), 1257–1267. doi:10.1016/j.neuroimage.2006.01.033.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326.

    Article  PubMed  Google Scholar 

  • Cutting, J. E., & Proffitt, D. R. (1982). The minimum principle and the perception of absolute, common, and relative motions. Cognitive Psychology, 14, 211–246.

    Article  PubMed  Google Scholar 

  • Dounskaia, N. V. (2005). The internal model and the leading joint hypothesis: Implications for control of multi-joint movements. Experimental Brain Research, 166, 1–16.

    Article  PubMed  Google Scholar 

  • Dounskaia, N. V., & Wang, W. (2014). A preferred pattern of joint coordination during arm movements with redundant degrees of freedom. Journal of Neurophysiology, 112(5), 1040–1053. doi:10.1152/jn.00082.2014.

    Article  PubMed  Google Scholar 

  • Ellenbuerger, T., Boutin, A., Blandin, Y., Shea, C. H., & Panzer, S. (2012). Scheduling observational and physical practice: Influence on the coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 65(7), 1260–1273. doi:10.1080/17470218.2011.654126.

    Article  Google Scholar 

  • Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 12.

    Article  Google Scholar 

  • Franceschini, M., Ceravolo, M. G., Agosti, M., Cavallini, P., Bonassi, S., Dall’Armi, V., & Sale, P. (2012). Clinical relevance of action observation in upper-limb stroke rehabilitation: A possible role in recovery of functional dexterity. A randomized clinical trial. Neurorehabilitation and Neural Repair, 26(5), 456–462. doi:10.1177/1545968311427406.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Gruetzmacher, N., Panzer, S., Blandin, Y., & Shea, C. H. (2011). Observation and physical practice: Coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 64(6), 1111–1123. doi:10.1080/17470218.2010.543286.

    Article  Google Scholar 

  • Guiard, Y. (1993). On Fitts’s and Hooke’s laws: Simple harmonic movement in upper-limb cyclical aiming. Acta Psychologica, 82, 139–159.

    Article  PubMed  Google Scholar 

  • Guiard, Y. (1997). Fitts’ law in the discrete vs. cyclical paradigm. Human Movement Science, 16(1), 97–131.

    Article  Google Scholar 

  • Hamilton, A., & Grafton, S. T. (2007). The motor hierarchy: From kinematics to goals and intentions. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition: Attention and performance XXll (pp. 381–408). Oxford: Oxford University Press.

    Google Scholar 

  • Hayes, S. J., Hodges, N. J., Huys, R., & Williams, A. M. (2007). End-point focus manipulations to determine what information is used during observational learning. Acta Psychologica, 126, 120–137.

    Article  PubMed  Google Scholar 

  • Hodges, N. J., Hayes, S. J., Breslin, G., & Williams, A. M. (2005). An evaluation of the minimal constraining information during observation for movement reproduction. Acta Psychologica, 119(3), 264–282. doi:10.1016/j.actpsy.2005.02.002.

    Article  PubMed  Google Scholar 

  • Hodges, N. J., Williams, A. M., Hayes, S. J., & Breslin, G. (2007). What is modelled during observational learning? Journal of Sports Sciences, 25(5), 531–545.

    Article  PubMed  Google Scholar 

  • Jacobs, A., & Shiffrar, M. (2005). Walking perception by walking observers. Journal of Experimental Psychology-Human Perception and Performance, 31(1), 157–169. doi:10.1037/0096-1523.31.1.157.

    Article  PubMed  Google Scholar 

  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201–211.

    Article  Google Scholar 

  • Kelso, J. A. S. (1994). The informational character of self-organized coordination dynamics. Human Movement Science, 13, 393–413.

    Article  Google Scholar 

  • Kelso, J. A. S., Buchanan, J. J., & Wallace, S. A. (1991). Order parameters for the neural organization of single limb, multijoint movement patterns. Experimental Brain Research, 85, 432–445.

    Article  PubMed  Google Scholar 

  • Kelso, J. A. S., & Pandya, A. S. (1991). Dynamic pattern generation and recognition. In N. I. Badler, B. A. Barsky, & D. Zeltzer (Eds.), Making them move: Mechanics, control, and animation of articulated figures (pp. 171–190). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2008). Perceptual influences on Fitts’ law. Experimental Brain Research, 190, 99–103.

    Article  PubMed  Google Scholar 

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2009). Bimanual 1:1 with 90° degrees continuous relative phase: Difficult or easy! Experimental Brain Research, 193(1), 129–136. doi:10.1007/s00221-008-1676-2.

  • Kovacs, A. J., Buchanan, J. J., & Shea, C. H. (2010). Perceptual and attentional influences on continuous 2:1 and 3:2 multi-frequency bimanual coordination. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 936–954.

    PubMed  Google Scholar 

  • Martens, R., Burwitz, L., & Zuckerman, J. (1976). Modeling effects on motor performance. The Research Quarterly, 47(2), 277–291.

    PubMed  Google Scholar 

  • Newell, K. M. (1991). Motor skill acquisition. Annual Review of Psychology, 42, 213–237.

    Article  PubMed  Google Scholar 

  • Osman, M., Bird, G., & Heyes, C. (2005). Action observation supports effector-dependent learning of finger movement sequences. Experimental Brain Research, 165, 19–27.

    Article  PubMed  Google Scholar 

  • Pinto, J., & Shiffrar, M. (1999). Subconfigurations of the human form in the perception of biological motion displays. Acta Psychologica, 102, 293–318.

    Article  PubMed  Google Scholar 

  • Scholz, J. P., & Kelso, J. A. S. (1989). A quantitative approach to understanding the formation and change of coordinated movement patterns. Journal of Motor Behavior, 21(2), 122–144.

    Article  PubMed  Google Scholar 

  • Scully, D. M. (1986). Visual perception of technical execution and aesthetic quality in biological motion. Human Movement Science, 5, 185–206.

    Article  Google Scholar 

  • Scully, D. M., & Carnegie, E. (1998). Observational learning in motor skill acquisition: A look at demonstrations. The Irish Journal of Psychology, 19(4), 472–485.

    Article  Google Scholar 

  • Scully, D. M., & Newell, K. M. (1985). Observational learning and the acquisition of motor skills: Toward a visual perception perspective. Journal of Human Movement Studies, 11, 169–186.

    Google Scholar 

  • Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 10.

    Article  Google Scholar 

  • Shiffrar, M., Lichtey, L., & Chatterjee, S. H. (1997). The perception of biological motion across apertures. Perception and Psychophysics, 59(1), 51–59.

    Article  PubMed  Google Scholar 

  • Wilson, A. D., Collins, D. R., & Bingham, G. P. (2005). Human movement coordination implicates relative direction as the information for relative phase. Experimental Brain Research, 165(3), 351–361.

    Article  PubMed  Google Scholar 

  • Zaal, F. T. J. M., Bingham, G. P., & Schmidt, R. C. (2000). Visual perception of mean relative phase and phase variability. Journal of Experimental Psychology: Human Perception and Performance, 26(3), 1209–1220.

    PubMed  Google Scholar 

  • Zanone, P. G., & Kelso, J. A. S. (1992). The evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403–421.

    PubMed  Google Scholar 

  • Zanone, P. G., & Kelso, J. A. S. (1997). Coordination dynamics of learning and transfer: Collective and component levels. Journal of Experimental Psychology: Human Perception and Performance, 23(5), 1454–1480.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Buchanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchanan, J.J., Park, I. Observation and physical practice: different practice contexts lead to similar outcomes for the acquisition of kinematic information. Psychological Research 81, 83–98 (2017). https://doi.org/10.1007/s00426-015-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0723-4

Keywords

Navigation