Advertisement

Psychological Research

, Volume 81, Issue 1, pp 143–156 | Cite as

Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task

  • Luz Bavassi
  • Juan E. Kamienkowski
  • Mariano Sigman
  • Rodrigo Laje
Original Article

Abstract

Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.

Keywords

Synchronization Error Error Correction Mechanism Sensorimotor Synchronization Phase Correction Response Positive Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Manuel Eguía for technical support in the building of the Arduino shield, Laura Kaczer, Veronica Perez Schuster, Pablo Bartfeld and Martín Graziano for useful discussions. This work was funded by grant PICT 881/07 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina), grant UNQ 53/3004 (Universidad Nacional de Quilmes, Argentina) and grant Milstein/Raíces (Ministerio de Ciencia y Tecnología, Argentina). M.S. is sponsored by CONICET and the James McDonnell Foundation 21st Century ScienceInitiative in Understanding Human Cognition— Scholar Award.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Aschersleben, G. (2002). Temporal control of movements in sensorimotor synchronization. Brain and Cognition, 48(1), 66–79.CrossRefPubMedGoogle Scholar
  2. Bavassi, L., Tagliazucchi, E., & Laje, R. (2013). Small perturbations in a finger-tapping task reveal inherent nonlinearities of the underlying error correction mechanism. Human Movement Science, 32(1), 21–47.CrossRefPubMedGoogle Scholar
  3. Bijsterbosch, J., Lee, K., Hunter, M., Tsoi, D., Lankappa, S., Wilkinson, I., … Woodruff, P. (2011). The Role of the Cerebellum in Sub- and Supraliminal Error Correction during Sensorimotor Synchronization: Evidence from fMRI and TMS. Journal of Cognitive Neuroscience, 23(5), 1100–1112.CrossRefPubMedGoogle Scholar
  4. Brainard, D. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.CrossRefPubMedGoogle Scholar
  5. Chen, Y., Ding, M., & Kelso, J. A. (2001). Origins of timing errors in human sensorimotor coordination. Journal of Motor Behavior, 33(1), 3–8.CrossRefPubMedGoogle Scholar
  6. Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4(7), 752–758.CrossRefPubMedGoogle Scholar
  7. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMedGoogle Scholar
  8. Dhamala, M., Pagnoni, G., Wiesenfeld, K., Zink, C., Martin, M., & Berns, G. (2003). Neural correlates of the complexity of rhythmic finger tapping. NeuroImage, 20, 918–926.CrossRefPubMedGoogle Scholar
  9. Duda, R., Hart, P., & Stork, D. (2000). “Pattern Classification “(2nd ed.). New Jersey: Wiley.Google Scholar
  10. Hary, D., & Moore, G. (1987). Synchronizing human movement with an external clock source. Biological Cybernetics, 56(5), 305–311.CrossRefPubMedGoogle Scholar
  11. Hemmelmann, C., Horn, M., Reiterer, S., Schack, B., Süsse, T., & Weiss, S. (2004). Multivariate tests for the evaluation of high-dimensional EEG data. Journal of Neuroscience Methods, 139(1), 111–120.CrossRefPubMedGoogle Scholar
  12. Hove, M. J., Balasubramaniam, R., & Keller, P. E. (2014). The time course of phase correction: a kinematic investigation of motor adjustment to timing perturbations during sensorimotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2243.PubMedPubMedCentralGoogle Scholar
  13. Jancke, L., Loose, R., Lutz, K., Specht, K., & Shah, N. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cognitive Brain Research, 10, 51–66.CrossRefPubMedGoogle Scholar
  14. Kamienkowski, J. E., Ison, M. J., Quiroga, R. Q., & Sigman, M. (2012). “Fixation-related potentials in visual search: a combined EEG and eye tracking study”. Journal of Vision 12(7), 4.CrossRefGoogle Scholar
  15. Large, E., & Jones, M. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119.CrossRefGoogle Scholar
  16. Lewis, P., Wing, A., Pope, P., Praamstra, P., & Miall, R. (2004). Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia, 42, 1301–1312.CrossRefPubMedGoogle Scholar
  17. Makeig, S., Bell, A. J., Jung, T. P., & Sejnowski, T. J. (1996).”Independent component analysis of electroencephalographic data.” Advances in neural information processing systems, 145–151.Google Scholar
  18. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 167, 177–190.CrossRefGoogle Scholar
  19. Mates, J. (1994a). A model of synchronization of motor acts to a stimulus sequence. Biological Cybernetics, 70(5), 463–473.CrossRefPubMedGoogle Scholar
  20. Mates, J. (1994b). A model of synchronization of motor acts to a stimulus sequence. Biological Cybernetics, 70(5), 475–484.CrossRefPubMedGoogle Scholar
  21. Merchant, H., Zarco, W., Pérez, O., Prado, L., & Bartolo, R. (2011). Measuring time with different neural chronometers during a synchronization-continuation task. Proceedings of the National Academy of Sciences, 108(49), 19784–19789.CrossRefGoogle Scholar
  22. Michon, J. A., & Van der Valk, N. J. L. (1967). A dynamic model of timing behavior. Acta Psychologica, 27, 204–212.CrossRefPubMedGoogle Scholar
  23. Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229–240.CrossRefPubMedGoogle Scholar
  24. Molinari, M., Leggio, M., & Thaut, M. (2007). The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. The Cerebellum, 6(1), 18–23.CrossRefPubMedGoogle Scholar
  25. Müller, K., Schmitz, F., Schnitzler, A., Freund, H., Aschersleben, G., & Prinz, W. (2000). Neuromagnetic correlates of sensorimotor synchronization. Journal of Cognitive Neuroscience, 12(4), 546–555.CrossRefPubMedGoogle Scholar
  26. Peters, M. (1989). The relationship between variability of intertap intervals and interval duration. Psychological Research, 51(1), 38–42.CrossRefGoogle Scholar
  27. Pollok, B., Gross, J., Kamp, D., & Schnitzler, A. (2008). Evidence for anticipatory motor control within a Cerebello-Diencephalic-Parietal Network. Journal of Cognitive Neuroscience, 20(5), 828–840.CrossRefPubMedGoogle Scholar
  28. Pollok, B., Müller, K., Aschersleben, G., Schmitz, F., Schnitzler, A., & Prinz, W. (2003). Cortical activations associated with auditorily paced finger tapping. NeuroReport, 14(2), 247–250.CrossRefPubMedGoogle Scholar
  29. Pollok, B., Müller, K., Aschersleben, G., Schnitzler, A. & Prinz, W. (2004). “The role of the primary somatosensory cortex in an auditorily paced finger tapping task.” Experimental Brain Research 156(1):111–117.Google Scholar
  30. Praamstra, P., Turgeon, M., Hesse, C., Wing, A., & Perryer, L. (2003). Neurophysiological correlates of error correction in sensorimotor-synchronization. NeuroImage, 20(2), 1283–1297.CrossRefPubMedGoogle Scholar
  31. Pressing, J., & Jolley-Rogers, G. (1997). Spectral properties of human cognition and skill. Biological Cybernetics, 76(5), 339–347.CrossRefPubMedGoogle Scholar
  32. Repp, B. (2002). Phase correction in sensorimotor synchronization: nonlinearities in voluntary and involuntary responses to perturbations. Human Movement Science, 21(1), 1–37.CrossRefPubMedGoogle Scholar
  33. Repp, B. (2003). Rate limits in sensorimotor synchronization with auditory and visual sequences: the synchronization threshold and the benefits and costs of interval subdivision. Journal of Motor Behavior, 35(4), 355–370.CrossRefPubMedGoogle Scholar
  34. Repp, B. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin & Review, 12(6), 969–992.CrossRefGoogle Scholar
  35. Repp, B. (2011). Tapping in synchrony with a perturbed metronome: the phase correction response to small and large phase shifts as a function of tempo. Journal of Motor Behavior, 43(3), 213–227.CrossRefPubMedGoogle Scholar
  36. Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1085.PubMedGoogle Scholar
  37. Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review of recent research (2006–2012). Psychonomic Bulletin & Review, 20(3), 403–452.CrossRefGoogle Scholar
  38. Rodríguez-Fornells, A., Kurzbuch, A. R., & Münte, T. F. (2002). Time course of error detection and correction in humans: neurophysiological evidence. The Journal of Neuroscience 22(22), 9990–9996.Google Scholar
  39. Schulze, H., Cordes, A., & Vorberg, D. (2005). Keeping synchrony while tempo changes: accelerando and ritardando. Music Perception, 22(3), 461–477.CrossRefGoogle Scholar
  40. Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. The Journal of Neuroscience, 28(30), 7585–7598.CrossRefPubMedGoogle Scholar
  41. Thaut, M., Tian, B., & Azimi-Sadjadi, M. R. (1998). Rhythmic finger tapping to cosine-wave modulated metronome sequences: evidence of subliminal entrainment. Human Movement Science, 17(6), 839–863.CrossRefGoogle Scholar
  42. Vorberg, D., & Schulze, H. (2002). Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. Journal of Mathematical Psychology, 46(1), 56–87.CrossRefGoogle Scholar
  43. Wing, A., & Kristofferson, A. (1973a). Response delays and the timing of discrete motor responses. Attention, Perception, & Psychophysics, 14(1), 5–12.CrossRefGoogle Scholar
  44. Wing, A., & Kristofferson, A. (1973b). The timing of interresponse intervals. Attention, Perception, & Psychophysics, 13(3), 5–12.CrossRefGoogle Scholar
  45. Zanto, T., Snyder, J., & Large, E. (2006). Neural correlates of rhythmic expectancy. Advances in cognitive psychology, 2(2–3), 221–231.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departamento de FísicaFCEyN, UBA and IFIBA-CONICETBuenos AiresArgentina
  2. 2.Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular FCEyN, UBA and IFIBYNE-CONICETBuenos AiresArgentina
  3. 3.Laboratorio de Inteligencia Artificial Aplicada, Departamento de ComputaciónFCEyN, UBABuenos AiresArgentina
  4. 4.Universidad Torcuato Di TellaBuenos AiresArgentina
  5. 5.Departamento de Ciencia y TecnologíaUniversidad Nacional de Quilmes, Argentina, and CONICET ArgentinaBuenos AiresArgentina

Personalised recommendations