Psychological Research

, Volume 80, Issue 5, pp 744–756 | Cite as

The time-course of distractor processing in auditory spatial negative priming

  • Malte MöllerEmail author
  • Susanne Mayr
  • Axel Buchner
Original Article


The spatial negative priming effect denotes slowed-down and sometimes more error-prone responding to a location that previously contained a distractor as compared with a previously unoccupied location. In vision, this effect has been attributed to the inhibition of irrelevant locations, and recently, of their task-assigned responses. Interestingly, auditory versions of the task did not yield evidence for inhibitory processing of task-irrelevant events which might suggest modality-specific distractor processing in vision and audition. Alternatively, the inhibitory processes may differ in how they develop over time. If this were the case, the absence of inhibitory after-effects might be due to an inappropriate timing of successive presentations in previous auditory spatial negative priming tasks. Specifically, the distractor may not yet have been inhibited or inhibition may already have dissipated at the time performance is assessed. The present study was conducted to test these alternatives. Participants indicated the location of a target sound in the presence of a concurrent distractor sound. Performance was assessed between two successive prime-probe presentations. The time between the prime response and the probe sounds (response-stimulus interval, RSI) was systematically varied between three groups (600, 1250, 1900 ms). For all RSI groups, the results showed no evidence for inhibitory distractor processing but conformed to the predictions of the feature mismatching hypothesis. The results support the assumption that auditory distractor processing does not recruit an inhibitory mechanism but involves the integration of spatial and sound identity features into common representations.


Negative Priming Probe Target Object File Distractor Event Negative Priming Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research reported in this article was supported by a grant from the Deutsche Forschungsgemeinschaft (Ma 2610/2-2).

Compliance with ethical standards

The authors Malte Möller, Susanne Mayr, and Axel Buchner certify (1) that all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards, (2) that informed consent was obtained from all individual participants included in the study, and (3) that they have no conflict of interest.


  1. Band, G. P. H., & van Boxtel, G. J. M. (1999). Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychologica, 101(2–3), 179–211. doi: 10.1016/S0001-6918(99)00005-0.CrossRefPubMedGoogle Scholar
  2. Broadbent, D. E. (1970). Stimulus and response set: two kinds of selective attention. In I. Mostotsky (Ed.), Attention: Comtemporary theories and analysis (pp. 51–60). New York: Appleton-Century-Crofts.Google Scholar
  3. Buckolz, E., Avramidis, C., & Fitzgeorge, L. (2008). Prime-trial processing demands and their impact on distractor processing in a spatial negative priming task. Psychological Research, 72(3), 235–248. doi: 10.1007/s00426-007-0107-5.CrossRefPubMedGoogle Scholar
  4. Buckolz, E., Edgar, C., Kajaste, B., Lok, M., & Khan, M. (2012a). Inhibited prime-trial distractor responses solely produce the visual spatial negative priming effect. Attention, Perception, & Psychophysics, 74(8), 1632–1643. doi: 10.3758/s13414-012-0366-0.CrossRefGoogle Scholar
  5. Buckolz, E., Fitzgeorge, L., & Knowles, S. (2012b). Spatial negative priming, but not inhibition of return, with central (foveal) displays. Psychology, 3(9), 666–674. doi: 10.4236/psych.2012.39101.CrossRefGoogle Scholar
  6. Buckolz, E., Goldfarb, A., & Khan, M. (2004). The use of a distractor-assigned response slows later responding in a location negative priming task. Perception and Psychophysics, 66(5), 837–845. doi: 10.3758/BF03194977.CrossRefPubMedGoogle Scholar
  7. Buckolz, E., Lok, M., Kajaste, B., Edgar, C., & Khan, M. (2015). The preservation of response inhibition aftereffects in a location-based spatial negative priming task: younger versus older adults. Psychological Research, 79(1), 120–133. doi: 10.1007/s00426-014-0541-0.CrossRefPubMedGoogle Scholar
  8. Buckolz, E., Stoddart, A., Edgar, C., & Khan, M. (2014). The error protection impact of inhibitory after-effects in a location-based task and its preservation with practice. Attention, Perception, & Psychophysics, 76(6), 1721–1728. doi: 10.3758/s13414-014-0701-8.CrossRefGoogle Scholar
  9. Chao, H.-F. (2009). Revisiting the role of probe distractors in negative priming: location negative priming is observed when probe distractors are consistently absent. Attention, Perception, & Psychophysics, 71(5), 1072–1082. doi: 10.3758/APP.71.5.1072.CrossRefGoogle Scholar
  10. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.Google Scholar
  11. Dyson, B. J., & Ishfaq, F. (2008). Auditory memory can be object based. Psychonomic Bulletin & Review, 15(2), 409–412. doi: 10.3758/PBR.15.2.409.CrossRefGoogle Scholar
  12. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi: 10.3758/BF03193146.CrossRefPubMedGoogle Scholar
  13. Fitzgeorge, L., & Buckolz, E. (2008). Spatial negative priming modulation: the influence of probe-trial target cueing, distractor presence, and an intervening response. European Journal of Cognitive Psychology, 20(6), 994–1026. doi: 10.1080/09541440701686250.CrossRefGoogle Scholar
  14. Fitzgeorge, L., Buckolz, E., & Khan, M. (2011). Recently inhibited responses are avoided for both masked and nonmasked primes in a spatial negative priming task. Attention, Perception, & Psychophysics, 73(5), 1435–1452. doi: 10.3758/s13414-011-0125-7.CrossRefGoogle Scholar
  15. Fletcher, B. C., & Rabbitt, P. M. (1978). The changing pattern of perceptual analytic strategies and response selection with practice in a two-choice reaction time task. The Quarterly Journal of Experimental Psychology, 30(3), 417–427. doi: 10.1080/00335557843000025.CrossRefPubMedGoogle Scholar
  16. Guy, S., & Buckolz, E. (2007). The locus and modulation of the location negative priming effect. Psychological Research, 71(2), 178–191. doi: 10.1007/s00426-005-0003-9.CrossRefPubMedGoogle Scholar
  17. Guy, S., Buckolz, E., & Khan, M. (2006). The locus of location repetition latency effects. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale, 60(4), 307–318. doi: 10.1037/cjep2006028.CrossRefPubMedGoogle Scholar
  18. Hall, M. D., Pastore, R. E., Acker, B. E., & Huang, W. (2000). Evidence for auditory feature integration with spatially distributed items. Perception and Psychophysics, 62(6), 1243–1257. doi: 10.3758/BF03212126.CrossRefPubMedGoogle Scholar
  19. Haworth, P., Buckolz, E., & Kajaste, B. (2014). The role of probe trial distractors in the production/removal of the spatial negative priming effect. Journal of Cognitive Psychology, 26(4). doi: 10.1080/20445911.2014.896368.
  20. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  21. Hommel, B. (1998). Event files: evidence for automatic integration of stimulus–response episodes. Visual Cognition, 5(1–2), 183–216. doi: 10.1080/713756773.CrossRefGoogle Scholar
  22. Hommel, B. (2004). Event files: feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494–500. doi: 10.1016/j.tics.2004.08.007.CrossRefPubMedGoogle Scholar
  23. Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 53–112). San Diego: Academic Press.Google Scholar
  24. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: object-specific integration of information. Cognitive Psychology, 24(2), 175–219. doi: 10.1016/0010-0285(92)90007-O.CrossRefPubMedGoogle Scholar
  25. Krueger, L. E., & Shapiro, R. G. (1981). Intertrial effects of same-different judgements. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 33A(3), 241–265. doi: 10.1080/14640748108400791.CrossRefGoogle Scholar
  26. Maybery, M. T., Clissa, P. J., Parmentier, F. B. R., Leung, D., Harsa, G., Fox, A. M., & Jones, D. M. (2009). Binding of verbal and spatial features in auditory working memory. Journal of Memory and Language, 61(1), 112–133. doi: 10.1016/j.jml.2009.03.001.CrossRefGoogle Scholar
  27. Mayr, S., Buchner, A., Möller, M., & Hauke, R. (2011). Spatial and identity negative priming in audition: evidence of feature binding in auditory spatial memory. Attention, Perception, & Psychophysics, 73(6), 1710–1732. doi: 10.3758/s13414-011-0138-2.CrossRefGoogle Scholar
  28. Mayr, S., Hauke, R., & Buchner, A. (2009). Auditory location negative priming: a case of feature mismatch. Psychonomic Bulletin & Review, 16(5), 845–849. doi: 10.3758/PBR.16.5.845.CrossRefGoogle Scholar
  29. Mayr, S., Möller, M., & Buchner, A. (2014). Auditory spatial negative priming: what is remembered of irrelevant sounds and their locations? Psychological Research, 78(3), 423–438. doi: 10.1007/s00426-013-0515-7.CrossRefPubMedGoogle Scholar
  30. Milliken, B., Tipper, S. P., Houghton, G., & Lupiáñez, J. (2000). Attending, ignoring, and repetition: on the relation between negative priming and inhibition of return. Perception and Psychophysics, 62(6), 1280–1296. doi: 10.3758/BF03212130.CrossRefPubMedGoogle Scholar
  31. Milliken, B., Tipper, S. P., & Weaver, B. (1994). Negative priming in a spatial localization task: feature mismatching and distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 624–646. doi: 10.1037/0096-1523.20.3.624.Google Scholar
  32. Möller, M., Mayr, S., & Buchner, A. (2013). Target localization among concurrent sound sources: no evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75(1), 132–144. doi: 10.3758/s13414-012-0380-2.CrossRefGoogle Scholar
  33. Mondor, T. A., Zatorre, R. J., & Terrio, N. A. (1998). Constraints on the selection of auditory information. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 66–79. doi: 10.1037/0096-1523.24.1.66.Google Scholar
  34. Neill, W. T., & Valdes, L. A. (1992). Persistence of negative priming: steady state or decay? Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(3), 565–576. doi: 10.1037/0278-7393.18.3.565.CrossRefGoogle Scholar
  35. Neill, W. T., & Valdes, L. A. (1996). Facilitatory and inhibitory aspects of attention Converging operations in the study of visual selective attention (pp. 77–106). Washington, DC: American Psychological Association; US.CrossRefGoogle Scholar
  36. Neill, W. T., Valdes, L. A., & Terry, K. M. (1995). Selective attention and the inhibitory control of cognition. Interference and inhibition in cognition (pp. 207–261). San Diego: Academic Press.CrossRefGoogle Scholar
  37. Neill, W. T., Valdes, L. A., Terry, K. M., & Gorfein, D. S. (1992). Persistence of negative priming: II. Evidence for episodic trace retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18(5), 993–1000. doi: 10.1037/0278-7393.18.5.993.CrossRefPubMedGoogle Scholar
  38. Neumann, E., & DeSchepper, B. G. (1991). Costs and benefits of target activation and distractor inhibition in selective attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 17(6), 1136–1145. doi: 10.1037/0278-7393.17.6.1136.CrossRefPubMedGoogle Scholar
  39. Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: identity mismatching, not distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 613–623. doi: 10.1037/0096-1523.20.3.613.PubMedGoogle Scholar
  40. Parmentier, F. B. R., Maybery, M. T., & Elsley, J. (2010). The involuntary capture of attention by novel feature pairings: a study of voice-location integration in auditory sensory memory. Attention, Perception, & Psychophysics, 72(2), 279–284. doi: 10.3758/APP.72.2.279.CrossRefGoogle Scholar
  41. Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action (pp. 494–519). Oxford: Oxford University Press.Google Scholar
  42. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 54A(2), 321–343. doi: 10.1080/713755969.CrossRefGoogle Scholar
  43. Tipper, S. P., Brehaut, J. C., & Driver, J. (1990). Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 492–504. doi: 10.1037/0096-1523.16.3.492.PubMedGoogle Scholar
  44. Tipper, S. P., Weaver, B., Cameron, S., Brehaut, J. C., & Bastedo, J. (1991). Inhibitory mechanisms of attention in identification and localization tasks: time course and disruption. Journal of Experimental Psychology. Learning, Memory, and Cognition, 17(4), 681–692. doi: 10.1037/0278-7393.17.4.681.CrossRefPubMedGoogle Scholar
  45. Tipper, S. P., Weaver, B., & Milliken, B. (1995). Spatial negative priming without mismatching: comment on Park and Kanwisher (1994). Journal of Experimental Psychology: Human Perception and Performance, 21(5), 1220–1229. doi: 10.1037/0096-1523.21.5.1220.Google Scholar
  46. Treisman, A. (1993). The perception of features and objects. In A. Baddeley & L. Weiskrantz (Eds.), Attention: selection, awareness, and control: a tribute to Donald Broadbent (pp. 5–35). New York: Clarendon Press/Oxford University Press.Google Scholar
  47. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi: 10.1016/0010-0285(80)90005-5.CrossRefPubMedGoogle Scholar
  48. Van der Heijden, A. H. C. (1981). Short term visual forgetting. London: Routledge and Keegan Paul.Google Scholar
  49. Zmigrod, S., & Hommel, B. (2009). Auditory event files: integrating auditory perception and action planning. Attention, Perception, & Psychophysics, 71(2), 352–362. doi: 10.3758/APP.71.2.352.CrossRefGoogle Scholar
  50. Zmigrod, S., & Hommel, B. (2010). Temporal dynamics of unimodal and multimodal feature binding. Attention, Perception, & Psychophysics, 72(1), 142–152. doi: 10.3758/APP.72.1.142.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Experimental PsychologyHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Chair of Psychology and Human-Machine InteractionUniversity of PassauPassauGermany

Personalised recommendations