Advertisement

Psychological Research

, Volume 80, Issue 4, pp 496–509 | Cite as

An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation

  • Desmond Mulligan
  • Keith R. Lohse
  • Nicola J. Hodges
Original Article

Abstract

We provide behavioral evidence that the human motor system is involved in the perceptual decision processes of skilled performers, directly linking prediction accuracy to the (in)ability of the motor system to activate in a response-specific way. Experienced and non-experienced dart players were asked to predict, from temporally occluded video sequences, the landing position of a dart thrown previously by themselves (self) or another (other). This prediction task was performed while additionally performing (a) an action-incongruent secondary motor task (right arm force production), (b) a congruent secondary motor task (mimicking) or (c) an attention-matched task (tone-monitoring). Non-experienced dart players were not affected by any of the secondary task manipulations, relative to control conditions, yet prediction accuracy decreased for the experienced players when additionally performing the force-production, motor task. This interference effect was present for ‘self’ as well as ‘other’ decisions, reducing the accuracy of experienced participants to a novice level. The mimicking (congruent) secondary task condition did not interfere with (or facilitate) prediction accuracy for either group. We conclude that visual–motor experience moderates the process of decision making, such that a seemingly visual–cognitive prediction task relies on activation of the motor system for experienced performers. This fits with a motor simulation account of action prediction in sports and other tasks, and alerts to the specificity of these simulative processes.

Keywords

Prediction Accuracy Secondary Task Motor Experience Motor Simulation Motor Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by funds awarded to the corresponding authors (Hodges) from an NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery grant and from a New Investigator salary award from CIHR (the Canadian Institute for Health Research).

References

  1. Abernethy, B., Farrow, D., Gorman, A. D., & Mann, D. (2012). Anticipatory behaviour and expert performance. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice (pp. 288–305). London: Routledge.Google Scholar
  2. Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefPubMedGoogle Scholar
  3. Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.CrossRefGoogle Scholar
  4. Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., Zentgraf, K., et al. (2014). Prediction of human actions: expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 35, 4016–4034.CrossRefPubMedGoogle Scholar
  5. Bischoff, M., Zentgraf, K., Lorey, B., Pilgramm, S., Balser, N., Baumgartner, E., et al. (2012). Motor familiarity: brain activation when watching kinematic displays of one’s own movements. Neuropsychologia, 50, 2085–2092.CrossRefPubMedGoogle Scholar
  6. Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567.CrossRefPubMedGoogle Scholar
  7. Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267.CrossRefPubMedGoogle Scholar
  8. Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or nonbiological motion on movement execution. Journal of Sports Sciences, 25, 519–530.CrossRefPubMedGoogle Scholar
  9. Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 3–22.CrossRefPubMedGoogle Scholar
  10. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.CrossRefPubMedGoogle Scholar
  11. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.CrossRefPubMedGoogle Scholar
  12. Cañal-Bruland, R., van Ginneken, W. F., van der Meer, B. R., & Williams, A. M. (2011). The effect of local kinematic changes on anticipation judgments. Human Movement Science, 30, 495–503.CrossRefPubMedGoogle Scholar
  13. Capa, R. L., Marshall, P. J., Shipley, T. F., Salesse, R. N., & Bouquet, C. A. (2011). Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation. Psychological Research, 75, 152–157.CrossRefPubMedGoogle Scholar
  14. Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 69–74.CrossRefPubMedGoogle Scholar
  15. Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 1148–1167.CrossRefPubMedGoogle Scholar
  16. Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31, 3493–3499.CrossRefPubMedGoogle Scholar
  17. Cooper, L., & Podgorny, P. (1976). Mental transformations and visual comparison processes: effects of complexity and similarity. Journal of Experimental Psychology: Human Perception and Performance, 2, 503–514.PubMedGoogle Scholar
  18. Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492–502.CrossRefPubMedGoogle Scholar
  19. Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31, 1257–1267.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., et al. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.CrossRefPubMedGoogle Scholar
  21. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.CrossRefPubMedGoogle Scholar
  22. Flach, R., Knoblich, G., & Prinz, W. (2004). Recognizing one’s own clapping: the role of temporal cues. Psychological Research, 69, 147–156.CrossRefPubMedGoogle Scholar
  23. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–667.CrossRefPubMedGoogle Scholar
  24. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Science, 2, 493–501.CrossRefGoogle Scholar
  25. Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19, 1239–1255.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gobet, F. (1998). Expert memory: a comparison of four theories. Cognition, 66, 115–152.CrossRefPubMedGoogle Scholar
  27. Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3, 35–44.CrossRefGoogle Scholar
  28. Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.CrossRefPubMedGoogle Scholar
  29. Grosjean, M., Zwickel, J., & Prinz, W. (2009). Acting while perceiving: assimilation precedes contrast. Psychological Research, 73, 3–13.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grossman, E. D., & Blake, R. (2001). Brain activity invoked by inverted and imagined biological motion. Vision Research, 41, 1475–1482.CrossRefPubMedGoogle Scholar
  31. Hamilton, A., Wolpert, D. M., & Frith, U. (2004). Your own action influences how you perceive another person’s action. Current Biology, 14, 493–498.CrossRefPubMedGoogle Scholar
  32. Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65, 3–14.CrossRefPubMedGoogle Scholar
  33. Hohmann, T., Troje, N. F., Olmos, A., & Munzert, J. (2011). The influence of motor expertise and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23, 403–415.CrossRefGoogle Scholar
  34. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action. Behavioral and Brain Sciences, 24, 849–937.CrossRefPubMedGoogle Scholar
  35. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the Findings. Psychonomic Bulletin and Review, 12, 822–851.CrossRefPubMedGoogle Scholar
  36. Iacoboni, M., Moinar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.CrossRefPubMedGoogle Scholar
  38. Ikegami, T., & Ganesh, G. (2014). Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans. Scientific Reports, 4, A6989.CrossRefGoogle Scholar
  39. Jackson, R. C., Abernethy, B., & Wernhart, S. (2009). Sensitivity to fine-grained and coarse visual information: the effect of blurring on anticipation skill. International Journal of Sport Psychology, 40, 461–475.Google Scholar
  40. Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355–371.CrossRefPubMedGoogle Scholar
  41. Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, 103–109.CrossRefGoogle Scholar
  42. Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.CrossRefPubMedGoogle Scholar
  43. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12, 467–472.CrossRefPubMedGoogle Scholar
  44. Knoblich, G., & Prinz, W. (2001). Recognition of self-generated actions from kinematic displays of drawing. Journal of Experimental Psychology: Human Perception and Performance, 27, 456–465.PubMedGoogle Scholar
  45. Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: the influence of posture and perspective. Experimental Brain Research, 194, 233–243.CrossRefPubMedGoogle Scholar
  46. Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210–220.PubMedGoogle Scholar
  47. Makris, S., & Urgesi, C. (2014). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive and Affective Neuroscience, 10, 342–351.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mann, D., Dicks, M., Cañal-Bruland, R., & van der Kamp, J. (2013). Neurophysiological studies may provide a misleading picture of how perceptual–motor interactions are coordinated. i-Perception, 4, 78–80.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport and Exercise Psychology, 29, 457–478.PubMedGoogle Scholar
  50. Miall, R. C., Stanley, J., Todhunter, S., Levick, C., Lindo, S., & Miall, J. D. (2006). Performing hand actions assists the visual discrimination of similar hand postures. Neuropsychologia, 44, 966–976.CrossRefPubMedGoogle Scholar
  51. Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology, Learning, Memory, and Cognition, 34, 1076–1083.CrossRefPubMedGoogle Scholar
  52. Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mulligan, D., & Hodges, N. J. (2014). Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychological Research, 78, 692–704.CrossRefPubMedGoogle Scholar
  54. Paulus, M., Lindemann, O., & Bekkering, H. (2009). Motor simulation in verbal knowledge acquisition. The Quarterly Journal of Experimental Psychology, 62, 2298–2305.CrossRefPubMedGoogle Scholar
  55. Pilgramm, S., Lorey, B., Stark, R., Munzert, J., & Zentgraf, K. (2009). The role of own-body representations in action observation: a functional MRI study. NeuroReport, 20, 997–1001.CrossRefPubMedGoogle Scholar
  56. Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524–529.CrossRefPubMedGoogle Scholar
  57. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRefGoogle Scholar
  58. Prinz, W., & Hommel, B. (2002). Common mechanisms in perception and action: Attention and performance XIX. New York: Oxford University Press.Google Scholar
  59. Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.CrossRefPubMedGoogle Scholar
  60. Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17, 1201–1207.CrossRefPubMedGoogle Scholar
  61. Repp, B. H., & Knoblich, G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychological Science, 15, 604–609.CrossRefPubMedGoogle Scholar
  62. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefPubMedGoogle Scholar
  63. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefPubMedGoogle Scholar
  64. Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 11, 2475–2480.CrossRefGoogle Scholar
  65. Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 2452–2461.CrossRefPubMedGoogle Scholar
  66. Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11, 211–218.CrossRefPubMedGoogle Scholar
  67. Schubotz, R., & von Cramon, D. Y. (2003). Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage, 20, S120–S131.CrossRefPubMedGoogle Scholar
  68. Schubotz, R. I., & von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24, 5467–5474.CrossRefPubMedGoogle Scholar
  69. Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.CrossRefPubMedGoogle Scholar
  70. Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.Google Scholar
  71. Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., & Prinz, W. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.CrossRefPubMedGoogle Scholar
  72. Springer, A., Brandstädter, S., & Prinz, W. (2013a). Dynamic simulation and static matching for action prediction: evidence from body part priming. Cognitive Science, 37, 936–952.CrossRefPubMedGoogle Scholar
  73. Springer, A., Parkinson, J., & Prinz, W. (2013b). Action simulation: time course and representational mechanisms. Frontiers in Cognition, 4, 1–20.Google Scholar
  74. Starkes, J. L. (1987). Skill in field hockey: the nature of the cognitive advantage. International Journal of Sport Psychology, 2, 146–160.Google Scholar
  75. Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2012). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.CrossRefPubMedGoogle Scholar
  76. Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, M. (2012). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.CrossRefPubMedGoogle Scholar
  77. Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise and Sport, 73, 107–112.CrossRefPubMedGoogle Scholar
  78. Williams, A. M., & Davids, K. (1995). Declarative knowledge in sport: a by-product of experience or a characteristic of expertise? Journal of Sport and Exercise Psychology, 17, 259–275.Google Scholar
  79. Williams, A. M., & Davids, K. (1998). Perceptual expertise in sport: Research, theory and practice. In H. Steinberg, I. Cockerill, & A. Dewey (Eds.), What sport psychologists do (pp. 48–57). Leicester: British Psychological Society.Google Scholar
  80. Williams, A. M., & Ward, P. (2003). Developing perceptual expertise in sport. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sports: Advances in research on sport expertise (pp. 220–249). Champaign, Illinois: Human Kinetics.Google Scholar
  81. Williams, A. M., & Ward, P. (2007). Perceptual-cognitive expertise in sport: Exploring new horizons. In G. Tenenabum & R. Eklund (Eds.), Handbook of sport psychology (3rd ed., pp. 203–223). New York: Wiley.Google Scholar
  82. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.CrossRefPubMedGoogle Scholar
  83. Witt, J. K., Kemmerer, D., Linkenauger, S. A., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21, 1215–1219.CrossRefPubMedGoogle Scholar
  84. Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: a role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34, 1479–1492.PubMedPubMedCentralGoogle Scholar
  85. Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925–930.CrossRefPubMedGoogle Scholar
  86. Wolfensteller, U., Schubotz, R., & von Cramon, D. Y. (2007). Understanding nonbiological dynamics with your own premotor system. Neuroimage, 36, T33–T43.CrossRefPubMedGoogle Scholar
  87. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358, 593–602.CrossRefGoogle Scholar
  88. Wuhr, P., & Müsseler, J. (2001). Time course of the blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 27, 1260–1270.PubMedGoogle Scholar
  89. Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10, 585–596.CrossRefPubMedGoogle Scholar
  90. Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefPubMedGoogle Scholar
  91. Zentgraf, K., Munzert, J., Bischoff, M., & Newman-Norlund, R. D. (2011). Simulation during observation of human actions—theories, empirical studies, applications. Vision Research, 51, 827–835.CrossRefPubMedGoogle Scholar
  92. Zwickel, J., & Prinz, W. (2012). Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research, 76, 171–182.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Desmond Mulligan
    • 1
  • Keith R. Lohse
    • 2
  • Nicola J. Hodges
    • 3
  1. 1.School of KinesiologyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of KinesiologyAuburn UniversityAuburnUSA
  3. 3.School of KinesiologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations