Advertisement

Psychological Research

, Volume 80, Issue 4, pp 487–495 | Cite as

Top-down social modulation of interpersonal observation–execution

  • James W. RobertsEmail author
  • Simon J. Bennett
  • Spencer J. Hayes
Original Article

Abstract

Cyclical upper limb movement can involuntarily deviate from its primary movement axis when the performer concurrently observes incongruent biological motion (i.e. interpersonal observation–execution). The current study examined the social modulation of such involuntary motor interference using a protocol that reflected everyday social interactions encountered in a naturalistic social setting. Eighteen participants executed cyclical horizontal arm movements during the observation of horizontal (congruent) or curvilinear (incongruent) biological motion. Both prior to, and during the interpersonal observation–execution task, participants also received a series of social words designed to prime a pro-social or anti-social attitude. The results showed greater orthogonal movement deviation, and thus interference, for the curvilinear compared to horizontal stimuli. Importantly, and opposite to most of the previous findings from work on automatic imitation and mimicry, there was a greater interference effect for the anti-social compared to pro-social prime condition. These findings demonstrate the importance of interpreting the context of social primes, and strongly support predictions of a comparison between the prime construct and the self-concept/-schema and the top-down response modulation of social incentives.

Keywords

Movement Trajectory Biological Motion Superior Temporal Sulcus Motor Contagion Movement Deviation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank David Broadbent and Chris Dutoy for their help in designing the model stimuli.

References

  1. Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Sciences, 4, 267–278. doi: 10.1016/S1364-6613(00)01501-1.CrossRefPubMedGoogle Scholar
  2. Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267. doi: 10.1016/j.neuropsychologia.2004.11.012.CrossRefPubMedGoogle Scholar
  3. Brass, M., Derrfuss, J., & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia, 43, 89–98. doi: 10.1016/j.neuropsychologia.2004.06.018.CrossRefPubMedGoogle Scholar
  4. Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20, 2252–2258. doi: 10.1093/cercor/bhp291.CrossRefPubMedGoogle Scholar
  5. Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: the perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910. doi: 10.1037//0022-3514.76.6.893.CrossRefPubMedGoogle Scholar
  6. Cook, J., & Bird, G. (2011). Social attitudes differentially modulate imitation in adolescents and adults. Experimental Brain Research, 211, 601–612. doi: 10.1007/s00221-011-2584-4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. D. C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315–326. doi: 10.1093/cercor/bhn083.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dijkerman, H. C., & Smit, M. C. (2007). Interference of grasping observation during prehension, a behavioural study. Experimental Brain Research, 176, 387–396. doi: 10.1007/s00221-006-0627-z.CrossRefPubMedGoogle Scholar
  9. Dijksterhuis, A., Spears, R., Postmes, T., Stapel, D., Koomen, W., et al. (1998). Seeing one thing and doing another: contrast effects in automatic behaviour. Journal of Personality and Social Psychology, 75, 862–871. doi: 10.1037//0022-3514.75.4.862.CrossRefGoogle Scholar
  10. Griffiths, D., & Tipper, S. P. (2012). When far becomes near: shared environments activate action simulation. Quarterly Journal of Experimental Psychology, 65, 1241–1249. doi: 10.1080/17470218.2012.688978.CrossRefGoogle Scholar
  11. Griffths, D., & Tipper, S. P. (2009). Priming reach trajectory when observing actions: hand-centred effects. Quarterly Journal of Experimental Psychology, 62, 2450–2470. doi: 10.1080/17470210903103059.CrossRefGoogle Scholar
  12. Hardwick, R. M., & Edwards, M. G. (2011). Observed reach trajectory influences executed reach kinematics in prehension. Quarterly Journal of Experimental Psychology, 64, 1082–1093. doi: 10.1080/17470218.2010.538068.CrossRefGoogle Scholar
  13. Heyes, C. M. (2011). Automatic imitation. Psychological Bulletin, 137, 463–483. doi: 10.1037/a0022288.CrossRefPubMedGoogle Scholar
  14. Hogeveen, J., & Obhi, S. S. (2011). Altogether now: activating interdependent self-construal induces hypermotor resonance. Cognitive Neuroscience, 2, 74–82. doi: 10.1080/17588928.2010.533164.CrossRefPubMedGoogle Scholar
  15. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi: 10.1017/S0140525X01000103.CrossRefPubMedGoogle Scholar
  16. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2568. doi: 10.1126/science.286.5449.2526.CrossRefPubMedGoogle Scholar
  17. Kilner, J. M., Neal, A., Weiskopf, N., Friston, K. J., & Frith, C. D. (2009). Evidence of mirror neurons in human inferior frontal gyrus. The Journal of Neuroscience, 29, 10153–10159. doi: 10.1523/JNEUROSCI.2668-09.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525. doi: 10.1080/17470910701428190.CrossRefPubMedGoogle Scholar
  19. Lakin, J. L., & Chartrand, T. L. (2003). Using nonconscious behavioural mimicry to create affiliation and rapport. Psychological Science, 14, 334–339. doi: 10.1111/1467-9280.14481.CrossRefPubMedGoogle Scholar
  20. Lakin, J. L., Chartrand, T. L., & Arkin, R. M. (2008). I am just too like you: nonconscious mimicry as an automatic behavioural response to social exclusion. Psychological Science, 19, 816–822. doi: 10.1111/j.1467-9280.2008.02162.x.CrossRefPubMedGoogle Scholar
  21. Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46, 905–910. doi: 10.1016/j.jesp.2010.07.001.CrossRefGoogle Scholar
  22. Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible action: effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34, 489–501. doi: 10.1037/0096-1523.34.2.489.PubMedGoogle Scholar
  23. Miall, R. C., Imamizu, H., & Miyauchi, S. (2000). Activation of the cerebellum in co-ordinated eye and hand tracking movements: an fMRI study. Experimental Brain Research, 135, 22–33. doi: 10.1007/s002210000491.CrossRefPubMedGoogle Scholar
  24. Miles, L. K., Nind, L. K., Henderson, Z., & Macrae, N. (2010). Moving memories: behavioural synchrony and memory for self and others. Journal of Experiment Social Psychology, 46, 457–460. doi: 10.1016/j.jesp.2009.12.006.CrossRefGoogle Scholar
  25. Nisbett, R. E., Peng, K., Choi, I., & Norenzayan, A. (2001). Culture and systems of thought: holistic versus analytic cognition. Psychological Review, 108, 291–310. doi: 10.1037/0033-295X.108.2.291.CrossRefPubMedGoogle Scholar
  26. Obhi, S. S., Hogeveen, J., & Pascual-Leone, A. (2011). Resonating with others: the effects of self-construal type on motor cortical output. The Journal of Neuroscience, 31, 14531–14535. doi: 10.1523/JNEUROSCI.3186-11.2011.CrossRefPubMedGoogle Scholar
  27. Over, H., & Carpenter, M. (2009). Priming third-party ostracism increases affiliative imitation in children. Developmental Science, 12, F1–F8. doi: 10.1111/j.1467-7687.2008.00820.x.CrossRefPubMedGoogle Scholar
  28. Press, C., Cook, J., Blakemore, S. J., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. The Journal of Neuroscience, 31, 2792–2800. doi: 10.1523/JNEUROSCI.1595-10.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154. doi: 10.1080/713752551.CrossRefGoogle Scholar
  30. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670. doi: 10.1038/35090060.CrossRefPubMedGoogle Scholar
  31. Roberts, J. W., Hayes, S. J., Uji, M., & Bennett, S. J. (2014). Motor Contagion: dissociating the effects of movement trajectory and end-state goals. Psychological Research,. doi: 10.1007/s00426-014-0589-x.PubMedGoogle Scholar
  32. Santiesteban, I., White, S., Cook, J., Gilbert, S. J., Heyes, C., & Bird, G. (2012). Training social cognition: from imitation to theory of mind. Cognition, 122, 228–235. doi: 10.1016/j.cognition.2011.11.004.CrossRefPubMedGoogle Scholar
  33. Spengler, S., von Cramon, D. Y., & Brass, M. (2010). Resisting motor mimicry: control of imitation involves processes central to social cognition in patients with frontal and temporo-parietal lesions. Social Neuroscience, 5, 401–416. doi: 10.1080/17470911003687905.CrossRefPubMedGoogle Scholar
  34. Stanley, J., Gowen, E., & Miall, C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915–926. doi: 10.1037/0096-1523.33.4.915.PubMedPubMedCentralGoogle Scholar
  35. Stürmer, B., Aschersleben, G., & Prinz, W. (2000). Correspondence effects with manual gestures and postures: a study of imitation. Journal of Experiment Psychology: Human Perception and Performance, 26, 1746–1759. doi: 10.1037//0096-1523.26.6.1746.Google Scholar
  36. Teufel, C., Fletcher, P. C., & Davis, G. (2010). Seeing other minds: attributed mental states influence perception. Trends in Cognitive Sciences, 14, 376–382. doi: 10.1016/j.tics.2010.05.005.CrossRefPubMedGoogle Scholar
  37. van Baaren, R. B., Janssen, L., Chartrand, T. L., & Dijkterhuis, A. (2009). Where is the love? The social aspects of mimicry. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1093–1102. doi: 10.1098/rstb.2009.0057.Google Scholar
  38. van Baaren, R. B., Maddux, W. W., Chartrand, T. L., de Bouter, C., & van Knippenberg, A. (2003). It takes two to mimic: behavioural consequences of self-construals. Journal of Personality and Social Psychology, 84, 1093–1102. doi: 10.1037/0022-3514.84.5.1093.CrossRefPubMedGoogle Scholar
  39. Wang, Y., & Hamilton, A. F. D. C. (2012). Social top-down response modulation (STORM): a model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 6, 153. doi: 10.3389/fnhum.2012.00153.PubMedPubMedCentralGoogle Scholar
  40. Wang, Y., & Hamilton, A. F. D. C. (2013). Understanding the role of “self” in the social priming of mimicry. PLoS ONE, 8, e60249. doi: 10.1371/journal.pone.0060249.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang, Y., & Hamilton, A. F. D. C. (2014). Anterior medial prefrontal cortex implements social priming of mimicry. Social cognitive and affective neuroscience,. doi: 10.1093/scan/nsu076.Google Scholar
  42. Wang, Y., Newport, R., & Hamilton, A. F. D. C. (2011a). Eye contact enhances mimicry of intransitive hand movements. Biology Letters, 7, 7–10. doi: 10.1098/rsbl.2010.0279.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang, Y., Ramsey, R., & Hamilton, A. F. D. C. (2011b). The control of mimicry by eye contact is mediated by medial prefrontal cortex. Journal of Neuroscience, 31, 12001–12010. doi: 10.1523/JNEUROSCI.0845-11.2011.CrossRefPubMedGoogle Scholar
  44. Wheeler, S. C., DeMarree, K. G., & Petty, R. E. (2007). Understanding the role of the self in prime-to-behavior effects: the active-self account. Personality and Social Psychology Review, 11, 234–261. doi: 10.1177/1088868307302223.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • James W. Roberts
    • 1
    Email author
  • Simon J. Bennett
    • 1
  • Spencer J. Hayes
    • 1
  1. 1.Brain and Behaviour Laboratory, Faculty of ScienceLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations