Skip to main content
Log in

Development of egocentric and allocentric spatial representations from childhood to elderly age

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Spatial reference frames are fundamental to represent the position of objects or places. Although research has reported changes in spatial memory abilities during childhood and elderly age, no study has assessed reference frames processing during the entire lifespan using the same task. Here, we aimed at providing some preliminary data on the capacity to process reference frames in 283 healthy participants from 6 to 89 years of age. A spatial memory task requiring egocentric/allocentric verbal judgments about objects in peri-/extrapersonal space was used. The main goals were: (1) tracing a baseline of the normal process of development of these spatial components; (2) clarifying if reference frames are differently vulnerable to age-related effects. Results showed a symmetry between children of 6–7 years and older people of 80–89 years who were slower and less accurate than all other age groups. As regards processing time, age had a strong effect on the allocentric component, especially in extrapersonal space, with a longer time in 6- to 7-year-old children and 80- to 89-year-old adults. The egocentric component looked less affected by aging. Regarding the level of spatial ability (accuracy), the allocentric ability appeared less sensitive to age-related variations, whereas the egocentric ability progressively improved from 8 years and declined from 60 years. The symmetry in processing time and level of spatial ability is discussed in relation to the development of executive functions and to the structural and functional changes due to incomplete maturation (in youngest children) and deterioration (in oldest adults) of underlying cerebral areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acredolo, L. P. (1977). Developmental changes in the ability to coordinate perspectives of a large-scale space. Developmental Psychology, 13, 1–8. doi:10.1037/0012-1649.13.1.1.

    Article  Google Scholar 

  • Acredolo, L. P. (1978). Development of spatial orientation in infancy. Developmental Psychology, 14, 224–234. doi:10.1037/0012-1649.14.3.224.

    Article  Google Scholar 

  • Acredolo, L. P., & Evans, D. (1980). Developmental changes in the effects of landmarks on infant spatial behavior. Developmental Psychology, 16, 312–318. doi:10.1037/0012-1649.16.4.312.

    Article  Google Scholar 

  • Arnold, A. E., Burles, F., Krivoruchko, T., Liu, I., Rey, C. D., Levy, R. M., et al. (2013). Cognitive mapping in humans and its relationship to other orientation skills. Experimental Brain Research, 224, 359–372. doi:10.1007/s00221-012-3316-0.

    Article  PubMed  Google Scholar 

  • Barca, L., Frascarelli, F., & Pezzulo, G. (2012). Working memory and mental imagery in cerebral palsy: a single case investigation. Neurocase, 18, 298–304. doi:10.1080/13554794.2011.588183.

    Article  PubMed  Google Scholar 

  • Barca, L., Pezzulo, G., & Castelli, E. (2010). Egocentric and allocentric spatial references in children with Cerebral Palsy. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 831–835). Austin: Cognitive Science Society.

    Google Scholar 

  • Barrash, J. (1998). A historical review of topographical disorientation and its neuroanatomical correlates. Journal of Clinical and Experimental Neuropsychology, 20, 807–827.

  • Berti, A., & Frassinetti, F. (2000). When far becomes near: remapping of space by tool use. Journal of Cognitive Neuroscience, 12, 415–420. doi:10.1162/089892900562237.

    Article  PubMed  Google Scholar 

  • Bohbot, V. D., McKenzie, S., Konishi, K., Fouquet, C., Kurdi, V., Schachar, R., et al. (2012). Virtual navigation strategies from childhood to senescence: evidence for changes across the life span. Frontiers in Aging Neuroscience, 15, 28. doi:10.3389/fnagi.2012.00028.

    Google Scholar 

  • Borella, E., Carretti, B., & De Beni, R. (2008). Working memory and inhibition across the adult life-span. Acta Psychologica, 128, 33–44. doi:10.1016/j.actpsy.2007.09.008.

    Article  PubMed  Google Scholar 

  • Bullens, J., Iglói, K., Berthoz, A., Postma, A., & Rondi-Reig, L. (2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107, 337–350. doi:10.1016/j.jecp.2010.05.010.

    Article  PubMed  Google Scholar 

  • Burgess, N. (2006). Spatial memory: how egocentric and allocentric combine. Trends in Cognitive Science, 10, 551–557. doi:10.1016/j.tics.2006.10.005.

    Article  Google Scholar 

  • Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academic Sciences, 1124, 77–97.

  • Burns, P. C. (1999). Navigation and the mobility of older drivers. Journal of Gerontology B Psychological Sciences and Social Sciences, 54, 49–55. doi:10.1093/geronb/54B.1.S49.

    Article  Google Scholar 

  • Cabeza, R., & Dennis, N. A. (2012). Frontal lobes and aging: deterioration and compensation. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 628–652). New York: Oxford University Press.

    Google Scholar 

  • Coello, Y., Bourgeois, J., & Iachini, T. (2012). Embodied perception of reachable space: how do we manage threatening objects? Cognitive Processing, 13, 131–135.

    Article  Google Scholar 

  • Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: a review. Journal of Environmental Psychology, 24, 329–340.

    Article  Google Scholar 

  • Cornoldi, C., & Vecchi, T. (2003). Visuo-spatial working memory and individual differences. Hove: Psychology Press.

    Google Scholar 

  • Craik, F. I. M. (1986). A functional account of age differences in memory. In F. Klix & H. Hagendorf (Eds.), Human memory and cognitive capabilities. Amsterdam: Elsevier.

    Google Scholar 

  • Dawson, J. D., Anderson, S. W., Uc, E. Y., Dastrup, E., & Rizzo, M. (2009). Predictors of driving safety in early Alzheimer disease. Neurology, 72, 521–527. doi:10.1212/01.wnl.0000341931.35870.49.

    Article  PubMed Central  PubMed  Google Scholar 

  • Delius, J. D., & Hollard, V. D. (1995). Orientation invariant pattern recognition by pigeons (Columba livia) and humans (Homo sapiens). Journal of Comparative Psychology, 109, 278–290.

    Article  PubMed  Google Scholar 

  • Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21, 483–500. doi:10.1037/0278-7393.21.2.483.

    Article  PubMed  Google Scholar 

  • Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12, 388–396.

    Article  PubMed Central  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘‘Mini-mental state’’ a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology, 31, 373–385. doi:10.1023/A:1024190429920.

    Article  PubMed  Google Scholar 

  • Galati, G., Pelle, G., Berthoz, A., & Committeri, G. (2010). Multiple reference frames used by the human brain for spatial perception and memory. Experimental Brain Research, 206, 109–120. doi:10.1007/s00221-010-2168-8.

    Article  PubMed  Google Scholar 

  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861–863. doi:10.1038/13158.

    Article  PubMed  Google Scholar 

  • Harris, M. A., & Wolbers, T. (2012). Ageing effects on path integration and landmark navigation. Hippocampus, 22, 1770–1780. doi:10.1002/hipo.22011.

    Article  PubMed  Google Scholar 

  • Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioral Brain Research, 209, 49–58. doi:10.1016/j.bbr.2010.01.012.

    Article  Google Scholar 

  • Hermer, L., & Spelke, E. (1994). A geometric process for spatial reorientation in young children. Nature, 370, 57–59.

    Article  PubMed  Google Scholar 

  • Hort, J., Laczó, J., Vyhnálek, M., Bojar, M., Bures, J., & Vlcek, K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America, 104, 4042–4047. doi:10.1073/pnas.0611314104.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Research, 163, 195–205. doi:10.1016/0006-8993(79)90349-4.

    Article  PubMed  Google Scholar 

  • Iachini, T., Iavarone, S., Senese, V. P., Ruotolo, F., & Ruggiero, G. (2009a). Visuospatial memory in healthy elderly, AD and MCI: a review. Current Aging Science, 2, 43–59. doi:10.2174/1874609810902010043.

    Article  PubMed  Google Scholar 

  • Iachini, T., & Logie, R. H. (2003). The role of perspective in locating position in a real world, unfamiliar environment. Applied Cognitive Psychology, 17, 715–732. doi:10.1002/acp.904.

    Article  Google Scholar 

  • Iachini, T., Poderico, C., Ruggiero, G., & Iavarone, A. (2005). Age differences in mental scanning of locomotor maps. Disability and Rehabilitation, 27, 741–752. doi:10.1080/09638280400014782.

    Article  PubMed  Google Scholar 

  • Iachini, T., & Ruggiero, G. (2006). Egocentric and allocentric spatial frames of reference: a direct measure. Cognitive Processing, 7, 126–127. doi:10.1007/s10339-006-0100-8.

    Article  Google Scholar 

  • Iachini, T., & Ruggiero, G. (2010). The role of visual experience in mental scanning of spatial maps based on locomotion: evidence from blind and sighted people. Perception, 39, 953–969. doi:10.1068/p6457.

    Article  PubMed  Google Scholar 

  • Iachini, T., Ruggiero, G., Conson, M., & Trojano, L. (2009b). Lateralization of egocentric and allocentric spatial processing after parietal brain lesions. Brain and Cognition, 69, 514–520. doi:10.1016/j.bandc.2008.11.001.

    Article  PubMed  Google Scholar 

  • Iachini, T., Ruggiero, G., & Ruotolo, F. (2009c). The effect of age on egocentric and allocentric spatial frames of reference. Cognitive Processing, 10, 222–224. doi:10.1007/s10339-009-0276-9.

    Article  Google Scholar 

  • Iachini, T., Ruggiero, G., & Ruotolo, F. (2014a). Does blindness affect egocentric and allocentric frames of reference in small and large scale spaces? Behavioural Brain Research, 273, 73–81. doi:10.1016/j.bbr.2014.07.032.

    Article  PubMed  Google Scholar 

  • Iachini, T., Ruggiero, G., Ruotolo, F., & Vinciguerra, M. (2014b). Motor resources in peripersonal space are intrinsic to spatial encoding: evidence from motor interference. Acta Psychologica, 153, 20–27.

    Article  PubMed  Google Scholar 

  • Iachini, T., Ruotolo, F., & Ruggiero, G. (2009d). The effects of familiarity and gender on spatial representation. Journal of Environmental Psychology, 29, 227–234. doi:10.1016/j.jenvp.2008.07.001.

    Article  Google Scholar 

  • Iaria, G., Palermo, L., Committeri, G., & Barton, J. J. (2009). Age differences in the formation and use of cognitive maps. Behavioral Brain Research, 196, 187–191. doi:10.1016/j.bbr.2008.08.040.

    Article  Google Scholar 

  • Iavarone, A., Milan, G., Vargas, G., Lamenza, F., De Falco, C., Gallotta, et al. (2007). Role of functional performance in diagnosis of dementia in elderly people with low educational level living in Southern Italy. Aging Clinical and Experimental Research, 19, 104–109. doi:10.1007/BF03324675.

    Article  PubMed  Google Scholar 

  • Iglói, K., Zaoui, M., Berthoz, A., & Rondi-Reig, L. (2009). Sequential egocentric strategy is acquired as early as allocentric strategy: parallel acquisition of these two navigation strategies. Hippocampus, 19, 1199–1211. doi:10.1002/hipo.20595.

    Article  PubMed  Google Scholar 

  • Jansen, P., Schmelter, A., & Heil, M. (2010). Spatial knowledge acquisition in younger and elderly adults: a study in a virtual environment. Experimental Psychology, 57, 54–60. doi:10.1027/1618-3169/a000007.

    Article  PubMed  Google Scholar 

  • Kirasic, K. C. (1991). Spatial cognition and behavior in young and elderly adults: implications for learning new environments. Psychological Aging, 6, 10–18. doi:10.1037/0882-7974.6.1.10.

    Article  Google Scholar 

  • Klencklen, G., Després, O., & Dufour, A. (2012). What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Research Reviews, 11, 123–135. doi:10.1016/j.arr.2011.10.001.

    Article  PubMed  Google Scholar 

  • Laczó, J., Andel, R., Vyhnálek, M., Vlcek, K., Magerova, H., Varjassyova, A., et al. (2012). From morris water maze to computer tests in the prediction of Alzheimer’s disease. Neurodegenerative Diseases, 10, 153–157. doi:10.1159/000333121.

    Article  PubMed  Google Scholar 

  • Learmonth, A. E., Nadel, L., & Newcombe, N. S. (2002). Children’s use of landmarks: implications for modularity theory. Psychological Science, 13, 337–341. doi:10.1111/j.0956-7976.2002.00461.x.

    Article  PubMed  Google Scholar 

  • Lemay, M., Bertram, C. P., & Stelmach, G. E. (2004). Pointing to an allocentric and egocentric remembered target in younger and older adults. Experimental Aging Research, 30, 391–406. doi:10.1080/03610730490484443.

    Article  PubMed  Google Scholar 

  • Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30, 718–729.

    Article  PubMed  Google Scholar 

  • Lithfous, S., Dufour, A., & Després, O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Research Reviews, 12, 201–213. doi:10.1016/j.arr.2012.04.007.

    Article  PubMed  Google Scholar 

  • Lohman, D. F. (1989). Individual differences in errors and latencies on cognitive tasks. Learning and Individual Differences, 1, 179–202. doi:10.1016/1041-6080(89)90002-2.

    Article  Google Scholar 

  • Lohman, D. F. (2000). Complex information processing and intelligence. In R. J. Sternberg (Ed.), Handbook of human intelligence (pp. 285–340). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S., Frith, C. D., & O’Keefe, J., (1998). Knowing where and getting there: a human navigation network. Science, 280, 921–924.

  • Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D. (2009). Age differences in visual path integration. Behavioral Brain Research, 205, 88–95. doi:10.1016/j.bbr.2009.08.001.

    Article  Google Scholar 

  • Makin, T. R., Holmes, N. P., & Ehrsson, H. H. (2008). On the other hand: dummy hands and peripersonal space. Behavioural Brain Research, 191, 1–10.

    Article  PubMed  Google Scholar 

  • McNamara, T. P. (2003). How are the locations of objects in the environment represented in memory? In C. Freksa, W. Brauer, C. Habel, & K. Wender (Eds.), Spatial cognition III, Routes and navigation, human memory and learning, spatial representation and spatial learning. Lecturer notes in Computer Science 2685 (pp. 174–191). Berlin: Springer-Verlag.

    Google Scholar 

  • Measso, G., Cavarzeran, F., Zappalà, G., Lebowitz, B. D., Crook, T. H., Pirozzolo, F. J., et al. (1993). The Mini Mental State Examination: normative study of an Italian random sample. Developmental Neuropsychology, 9, 77–85. doi:10.1080/87565649109540545.

    Article  Google Scholar 

  • Meneghetti, C., Fiore, F., Borella, E., & De Beni, R. (2011). Learning a map of environment: the role of visuo-spatial abilities in young and older adults. Applied Cognitive Psychology, 25, 952–959. doi:10.1002/acp.1788.

    Article  Google Scholar 

  • Millar, S. (1994). Understanding and representing space. Theory and evidence from studies with blind and sighted children. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Moffat, S. D. (2009). Aging and spatial navigation: what do we know and where do we go? Neuropsychology Review, 19, 478–489. doi:10.1016/j.neuropsychologia.2007.10.005.

    Article  PubMed  Google Scholar 

  • Moffat, S. D., Zondermann, A., & Resnick, S. (2001). Age differences in spatial memory in a virtual environment navigation task. Neurobiology of Aging, 22, 787–796. doi:10.1016/S0197-4580(01)00251-2.

    Article  PubMed  Google Scholar 

  • Montefinese, M., Sulpizio, V., Galati, G., & Committeri, G. (2014). Age-related effects on spatial memory across viewpoint changes relative to different reference frames. Psychological Research,. doi:10.1007/s00426-014-0598-9.

    Google Scholar 

  • Nadel, L., & Hardt, O. (2004). The spatial brain. Neuropsychology, 18, 473–476. doi:10.1037/0894-4105.18.3.473.

    Article  PubMed  Google Scholar 

  • Nardini, M., Burgess, N., Breckenridge, K., & Atkinson, J. (2006). Differential developmental trajectories for egocentric, environmental, and intrinsic frames of reference in spatial memory. Cognition, 101, 153–172. doi:10.1016/j.cognition.2005.09.005.

    Article  PubMed  Google Scholar 

  • Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18, 689–693. doi:10.1016/j.cub.2008.04.021.

    Article  PubMed  Google Scholar 

  • Nardini, M., Thomas, R. L., Knowland, V. C. P., & Braddick, O. (2009). A viewpoint-independent process for spatial reorientation. Cognition, 112, 241–248. doi:10.1016/j.cognition.2009.05.003.

    Article  PubMed  Google Scholar 

  • Newcombe, N. S., & Huttenlocher, J. (2003). Making space. The development of spatial representation and reasoning. Cambridge: MIT Press.

    Google Scholar 

  • Newman, M., & Kaszniak, A. (2000). Spatial memory and aging: performance on a human analog of the Morris water maze. Aging, Neuropsychology, and Cognition, 7, 86–93. doi:10.1076/1382-5585(200006)7:2;1-U;FT086.

    Article  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. USA: Oxford University Press.

    Google Scholar 

  • Paillard, J. (1991). Brain and space. Oxford: Oxford Science Publications.

    Google Scholar 

  • Park, D. C. (2000). Basic mechanisms accounting for age-related decline in cognitive functions. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A Primer (pp. 3–22). Philadelphia: Psychology Press.

    Google Scholar 

  • Pfefferbaum, A., Mathalon, D. H., Sullivan, E. V., Rawles, J. M., Zipursky, R. B., & Lim, K. O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51, 874–887.

    Article  PubMed  Google Scholar 

  • Piaget, J., & Inhelder, B. (1967). The child’s conception of space. New York: Humanities Pr.

    Google Scholar 

  • Picucci, L., Caffò, A. O., & Bosco, A. (2009). Age and sex differences in a virtual version of the reorientation task. Cognitive Processing, 10, 272–275. doi:10.1007/s10339-009-0321-8.

    Article  Google Scholar 

  • Pouliot, S., & Gagnon, S. (2005). Is egocentric space automatically encoded? Acta Psychologica, 118, 193–210. doi:10.1016/j.actpsy.2004.10.016.

    Article  PubMed  Google Scholar 

  • Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: a study of a five-year change. Neurology, 62, 433–438. doi:10.1212/01.WNL.0000106466.09835.46.

    Article  PubMed  Google Scholar 

  • Ribordy, F., Jabès, A., Banta Lavenex, P., & Lavenex, P. (2013). Development of allocentric spatial memory abilities in children from 18 months to 5 years of age. Cognitive Psychology, 66, 1–29. doi:10.1016/j.cogpsych.2012.08.001.

    Article  PubMed  Google Scholar 

  • Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15, 1157–1165. doi:10.1037/0278-7393.15.6.1157.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1997). The space around us. Science, 277, 190–191.

    Article  PubMed  Google Scholar 

  • Rodgers, M. K., Sindone, J. A, I. I. I., & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33, 15–22. doi:10.1016/j.neurobiolaging.2010.07.021.

    Article  Google Scholar 

  • Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L., & Carr, W. S. (1998). Mental representations of large and small spatial layouts are orientation dependent. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24, 215–226. doi:10.1037/0278-7393.24.1.215.

    Article  PubMed  Google Scholar 

  • Ruggiero, G., Frassinetti, F., Iavarone, A., & Iachini, T. (2014). The lost ability to find the way: topographical disorientation after a left brain lesion. Neuropsychology, 28, 147–160. doi:10.1037/neu0000009.

    Article  PubMed  Google Scholar 

  • Ruggiero, G., Ruotolo, F., & Iachini, T. (2009). The role of vision in egocentric and allocentric spatial frames of reference. Cognitive Processing, 10, 283–285. doi:10.1007/s10339-009-0320-9.

    Article  Google Scholar 

  • Ruggiero, G., Ruotolo, F., & Iachini, T. (2012). Egocentric/allocentric and coordinate/categorical haptic encoding in blind people. Cognitive Processing, 13, 313–317. doi:10.1007/s10339-012-0504-6.

    Article  Google Scholar 

  • Ruggiero, G., Sergi, I., & Iachini, T. (2008). Gender differences in remembering and inferring spatial distances. Memory, 16, 821–835. doi:10.1080/09658210802307695.

    Article  PubMed  Google Scholar 

  • Ruotolo, F., van Der Ham, I. J. M., Iachini, T., & Postma, A. (2011). The relationship between allocentric and egocentric frames of reference and categorical and coordinate spatial information processing. Quarterly Journal of Experimental Psychology, 64, 1138–1156. doi:10.1080/17470218.2010.539700.

    Article  Google Scholar 

  • Ruotolo, F., van der Ham, I., Postma, A., Ruggiero, G., & Iachini, T. (2015). How coordinate and categorical spatial relations combine with egocentric and allocentric reference frames in a motor task: effects of delay and stimuli characteristics. Behavioural Brain Research, 284, 167–178. doi:10.1016/j.bbr.2015.02.021.

    Article  PubMed  Google Scholar 

  • Salthouse, T. A. (1996). The processing speed theory of adult age differences in cognition. Psychological Review, 103, 403–428. doi:10.1037/0033-295X.103.3.403.

    Article  PubMed  Google Scholar 

  • Sanders, A. E., Holtzer, R., Lipton, R. B., Hall, C., & Verghese, J. (2008). Egocentric and exocentric navigation skills in older adults. Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 63, 1356–1363.

    Article  Google Scholar 

  • Schaie, K. W. (2005). What can we learn from longitudinal studies of adult development? Research in Human Development, 2, 133–158. doi:10.1207/s15427617rhd0203_4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development (pp. 37–55). New York: Academic Press.

    Google Scholar 

  • Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14, 560–589. doi:10.1016/0010-0285(82)90019-6.

    Article  PubMed  Google Scholar 

  • Tsujimoto, S. (2008). The prefrontal cortex: functional neural development during early childhood. The Neuroscientist, 14, 345–358. doi:10.1177/1073858408316002.

    Article  PubMed  Google Scholar 

  • Vallar, G., Lobel, E., Galati, G., Berthoz, A., Pizzamiglio, L., & Le Bihan, D. (1999). A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Experimental Brain Research, 124, 281–286.

    Article  PubMed  Google Scholar 

  • Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature Reviews Neuroscience, 10, 792–802.

  • Vasilyeva, M., & Lourenco, S. F. (2012). Development of spatial cognition. WIREs Cognitive Science, 3, 349–362. doi:10.1002/wcs.1171.

    Article  PubMed  Google Scholar 

  • Wang, R. F., & Spelke, E. (2000). Updating egocentric representations in human navigation. Cognition, 77, 215–250. doi:10.1016/S0010-0277(00)00105-0.

    Article  PubMed  Google Scholar 

  • Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychological Aging, 12, 372–375. doi:10.1037/0882-7974.12.2.372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Ruggiero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggiero, G., D’Errico, O. & Iachini, T. Development of egocentric and allocentric spatial representations from childhood to elderly age. Psychological Research 80, 259–272 (2016). https://doi.org/10.1007/s00426-015-0658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0658-9

Keywords

Navigation