Skip to main content
Log in

Does working memory training have to be adaptive?

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

This study tested the common assumption that, to be most effective, working memory (WM) training should be adaptive (i.e., task difficulty is adjusted to individual performance). Indirect evidence for this assumption stems from studies comparing adaptive training to a condition in which tasks are practiced on the easiest level of difficulty only [cf. Klingberg (Trends Cogn Sci 14:317–324, 2010)], thereby, however, confounding adaptivity and exposure to varying task difficulty. For a more direct test of this hypothesis, we randomly assigned 130 young adults to one of the three WM training procedures (adaptive, randomized, or self-selected change in training task difficulty) or to an active control group. Despite large performance increases in the trained WM tasks, we observed neither transfer to untrained structurally dissimilar WM tasks nor far transfer to reasoning. Surprisingly, neither training nor transfer effects were modulated by training procedure, indicating that exposure to varying levels of task difficulty is sufficient for inducing training gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The number of stars corresponded to the proportion of correct responses: 5 stars for at least 80 % correct, 4 stars for more than 70 % correct, 3 stars for more than 60 % correct, and 2 stars for less than 60 % correct. In WM training, 1 star was given if recall performance was less than 60 % or performance in the processing task was below 80 % (having at least 80 % correct in the processing task was a prerequisite to receive any higher number of stars). In the active control condition, participants received 1 star if performance was below 50 %.

References

  • Arthur, W, Jr, & Day, D. V. (1994). Development of a short form for the Raven advanced progressive matrices test. Educational and Psychological Measurement, 54(2), 394–403.

    Article  Google Scholar 

  • Arthur, W, Jr, Tubre, T. C., Paul, D. S., & Sanchez-Ku, M. L. (1999). College-sample psychometric and normative data on a short form of the Raven advanced progressive matrices test. Journal of Psychoeducational Assessment, 17, 354–361.

    Article  Google Scholar 

  • Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2014). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review,. doi:10.3758/s13423-014-0699-x.

    Google Scholar 

  • Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 290–412. doi:10.1016/j.jml.2007.12.005.

    Article  Google Scholar 

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68, 255–278. doi:10.1016/j.jml.2012.11.001.

    Article  Google Scholar 

  • Bates, D. M. (2010). lme4: mixed-effects modeling with R. Retrieved from http://lme4.r-forge.r-project.org/book/.

  • Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4 (Version 1.1–7).

  • Bless, H., Wänke, M., Bohner, G., Fellhauer, R. F., & Schwarz, N. (1994). Need for cognition: eine Skala zur Erfassung von Engagement und Freude bei Denkaufgaben : need for cognition: a scale measuring engagement and happiness in cognitive tasks. Zeitschrift für Sozialpsychologie, 25, 147–154.

    Google Scholar 

  • Borkenau, P., & Ostendorf, F. (2008). NEO-Fünf-Faktoren-Inventar nach Costa und McCrae (NEO-FFI). Manual (2nd ed.). Göttingen: Hogrefe.

    Google Scholar 

  • Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.

    Article  PubMed  Google Scholar 

  • Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6(63), 1–7. doi:10.3389/fnhum.2012.00063.

    Google Scholar 

  • Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12–21. doi:10.1080/17470215808416249.

    Article  Google Scholar 

  • Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42(1), 116–131. doi:10.1037/0022-3514.42.1.116.

    Article  Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. doi:10.3758/PBR.17.2.193.

    Article  Google Scholar 

  • Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542. doi:10.1016/j.intell.2012.07.004.

    Article  Google Scholar 

  • Colom, R., Quiroga, M. Á., Shih, P. C., Martínez-Molina, A., Román, F. J., Requena, L., & Ramírez, I. (2010). Improvement in working memory is not related to increased intelligence scores. Intelligence, 38, 497–505. doi:10.1016/j.intell.2010.06.008.

    Article  Google Scholar 

  • Colom, R., Román, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., & Jaeggi, S. M. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41, 712–727. doi:10.1016/j.intell.2013.09.002.

    Article  Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: a methodological review and user’s guide. Psychonomic Bulletin and Review, 12(5), 739–786. doi:10.3758/BF03196772.

    Article  Google Scholar 

  • Costa, P. T., & McCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five factor inventory (NEO-FFI). Professional manual. Odessa: Psychological Assessment Resources.

  • Cousineau, D. (2005). Confidence intervals in within-subjects designs: a simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.

    Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2015). Intrinsic Motivation Inventory. http://selfdeterminationtheory.org/questionnaires/10-questionnaires/50. Retrieved 13 June 2013.

  • Dunning, D. L., Holmes, J., & Gathercole, S. E. (2013). Does working memory training lead to generalized improvements in children with low working memory? A randomized controlled trial. Developmental Science, 16(6), 915–925. doi:10.1111/desc.12068.

    PubMed Central  PubMed  Google Scholar 

  • Dweck, C. S. (1999). Self-theories: their role in motivation, personality, and development. Philadelphia: Psychology Press.

    Google Scholar 

  • Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. doi:10.1037/0096-3445.128.3.309.

    Article  Google Scholar 

  • Gibson, B. S., Gondoli, D. M., Kronenberger, W. G., Johnson, A. C., Steeger, C. M., & Morrisey, R. A. (2013). Exploration of an adaptive training regimen that can target the secondary memory component of working memory capacity. Memory and Cognition, 41(5), 726–737. doi:10.3758/s13421-013-0295-8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Green, S. C., Strobach, T., & Schubert, T. (2014). On methodological standards in training and transfer experiments. Psychological Research, 78(6), 756–772. doi:10.1007/s00426-013-0535-3.

    Article  PubMed  Google Scholar 

  • Halekoh, U., & Højsgaard, S. (2014). A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. Journal of Statistical Software, 59(9), 1–30.

    Article  Google Scholar 

  • Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419. doi:10.1177/0956797613492984.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. doi:10.1073/pnas.0801268105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Shah, P., & Jonides, J. (2014). The role of individual differences in cognitive training and transfer. Memory and Cognition, 42(3), 464–480. doi:10.3758/s13421-013-0364-z.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi:10.1016/j.intell.2010.09.001.

    Article  Google Scholar 

  • Karbach, J., Strobach, T., & Schubert, T. (2014). Adaptive working-memory training benefits reading, but not mathematics in middle childhood. Child Neuropsychology,. doi:10.1080/09297049.2014.899336.

    PubMed  Google Scholar 

  • Karbach, J., & Verhaeghen, P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. doi:10.1177/0956797614548725.

    Article  PubMed Central  PubMed  Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi:10.1016/j.tics.2010.05.002.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., & Westerberg, H. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186. doi:10.1097/00004583-200502000-00010.

    Article  PubMed  Google Scholar 

  • Klumb, P. L. (2001). Knoten im Taschentuch: der Einsatz von Gedächtnishilfen im Alltag. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 33(1), 42–49. doi:10.1026//0049-8637.33.1.42.

    Article  Google Scholar 

  • Lampit, A., Hallock, H., & Valenzuela, M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLOS Medicine, 11(11), e1001756. doi:10.1371/journal.pmed.1001756.

    Article  PubMed Central  PubMed  Google Scholar 

  • Licini, C. (2014). Verbesserung der Lernfähigkeit durch gezieltes Arbeitsgedächtnistraining [Improvement of the Ability Learn Through Working Memory Training]. (Unpublished master’s thesis). University of Zurich, Zurich, Switzerland.

  • Lövden, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. doi:10.1037/a0020080.

    Article  PubMed  Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.

    PubMed  Google Scholar 

  • Morey, R. D. (2008). Confidence intervals from normalized data: a correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61–64.

    Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18, 46–60. doi:10.3758/s13423-010-0034-0.

    Article  PubMed  Google Scholar 

  • Noack, H., Lövden, M., & Schmiedek, F. (2014). On the validity and generality of transfer effects in cognitive training research. Psychological Research, 78(6), 773–789. doi:10.1007/s00426-014-0564-6.

    Article  PubMed  Google Scholar 

  • Oberauer, K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. Journal of Experimental Psychology: General, 134(3), 368–387. doi:10.1037/0096-3445.134.3.368.

    Article  Google Scholar 

  • Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(2), 197–214. doi:10.1037/0278-7393.32.2.197.

    Article  PubMed  Google Scholar 

  • Oberauer, K. (2010). Declarative and procedural working memory: common principles, common capacity limits? Psychologica Belgica, 50(3&4), 277–308.

    Article  Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2003). The multiple faces of working memory: storage, processing, supervision, and coordination. Intelligence, 31, 167–193. doi:10.1016/S0160-2896(02)00115-0.

    Article  Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641–652. doi:10.1016/j.intell.2008.01.007.

    Article  Google Scholar 

  • R Core Team. (2014). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/.

  • Raven, J. C. (1990). Advanced progressive matrices: sets I, II. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. doi:10.1037/a0029082.

    Article  Google Scholar 

  • Rheinberg, F., Vollmeyer, R., & Bruns, B. D. (2001). FAM: ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen. Diagnostica, 47(2), 57–66.

    Article  Google Scholar 

  • Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience,. doi:10.3389/fnhum.2012.00166.

    PubMed Central  PubMed  Google Scholar 

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.

    Article  Google Scholar 

  • Schmiedek, F., Lövden, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Frontiers in Aging Neuroscience, 2(27), 1–10. doi:10.3389/fnagi.2010.00027.

    Google Scholar 

  • Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. doi:10.1037/0096-3445.136.3.414.

    Article  Google Scholar 

  • Schweizer, S., Hampshire, A., & Dalgleish, T. (2011). Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training. PLoS One, 6(9), e24372. doi:10.1371/journal.pone.0024372.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. doi:10.1037/a0027473.

    Article  PubMed  Google Scholar 

  • Smith, G., Del Sala, S., Logie, R. H., & Maylor, E. A. (2000). Prospective and retrospective memory in normal ageing and dementia: a questionnaire study. Memory, 8(5), 311–321. doi:10.1080/09658210050117735.

    Article  PubMed  Google Scholar 

  • Sprenger, A. M., Atkins, S. M., Bolger, D. J., Harbison, J. I., Novick, J. M., Chrabaszcz, J. S., & Dougherty, M. R. (2013). Training working memory: limits of transfer. Intelligence, 41, 638–663. doi:10.1016/j.intell.2013.07.013.

    Article  Google Scholar 

  • Stepankova, H., Lukavsky, J., Buschkuehl, M., Kopecek, M., Ripova, D., & Jaeggi, S. M. (2014). The malleability of working memory and visuospatial skills: a randomized controlled study in older adults. Developmental Psychology, 50(4), 1049–10559. doi:10.1037/a0034913.

    Article  PubMed  Google Scholar 

  • Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—and a little bit more. Intelligence, 30, 261–288.

    Article  Google Scholar 

  • Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., & Gabrieli, J. D. E. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS One, 8(5), e63614. doi:10.1371/journal.pone.0063614.

    Article  PubMed Central  PubMed  Google Scholar 

  • von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013a). Effects of working memory training in young and old adults. Memory and Cognition, 41(4), 611–624. doi:10.3758/s13421-012-0280-7.

    Article  Google Scholar 

  • von Bastian, C. C., Locher, A., & Ruflin, M. (2013b). Tatool: a Java-based open-source programming framework for psychological studies. Behavior Research Methods, 45(1), 108–115. doi:10.3758/s13428-012-0224-y.

    Article  Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi:10.1016/j.jml.2013.02.002.

    Article  Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2014). Effects and mechanisms of working memory training: a review. Psychological Research, 78(6), 803–820. doi:10.1007/s00426-013-0524-6.

    Article  Google Scholar 

  • Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? Frontiers in Psychology, 4(433), 1–22. doi:10.3389/fpsyg.2013.00433.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to the first author from the Suzanne and Hans Biäsch Foundation for Applied Psychology. We thank Borhan Bas, Linda Horvath, Lukas Lehmann, Cristina Licini, and Rahel Rodenkirch for their assistance with collecting the data. We also thank Esther Haeller, Esther Spirig, and Anja Waldmeier for their help in creating study materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia C. von Bastian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Bastian, C.C., Eschen, A. Does working memory training have to be adaptive?. Psychological Research 80, 181–194 (2016). https://doi.org/10.1007/s00426-015-0655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0655-z

Keywords

Navigation