Advertisement

Psychological Research

, Volume 80, Issue 1, pp 128–148 | Cite as

Working memory training improves visual short-term memory capacity

  • Hillary SchwarbEmail author
  • Jayde Nail
  • Eric H. Schumacher
Original Article

Abstract

Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1–2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87–185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297–314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46–60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity—a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622–628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

Keywords

Cognitive Training Antisaccade Task Work Memory Training Change Detection Task Spatial Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded in part by a grant to the author from the Air Force Offices of Scientific Research (Award No. FA9550-09-1-0162); in part by a grant from the American Psychological Association; and in part by a graduate research award from the Georgia Institute of Technology School of Psychology.

References

  1. Adams, J. A. (1987). Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychological Bulletin, 101(1), 41–74. doi: 10.1037/0033-2909.101.1.41.CrossRefGoogle Scholar
  2. Arend, A. M., & Zimmer, H. D. (2012). Successful training of filtering mechanisms in multiple object tracking does not transfer to filtering mechanisms in a visual working memory task: behavioral and electrophysiological evidence. Neuropsychologia, 50(10), 2379–2388. doi: 10.1016/j.neuropsychologia.2012.16.007.PubMedCrossRefGoogle Scholar
  3. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628. doi: 10.1111/j.1467-9280.2007.01949.x.PubMedCrossRefGoogle Scholar
  4. Bahrick, H. P. (1984). Semantic memory content in permastore: fifty years of memory for spanish learned in school. Journal of Experimental Psychology: General, 113(1), 1–29.CrossRefGoogle Scholar
  5. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. doi: 10.1037//0033-2909.128.4.612.PubMedCrossRefGoogle Scholar
  6. Bartlett, F. C. (1947). The measurement of human skill. British Medical Journal, 1(4511), 877–880.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi: 10.1016/j.actpsy.2008.09.005.PubMedCrossRefGoogle Scholar
  8. Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience,. doi: 10.3389/fnhum.2012.00063.Google Scholar
  9. Broadbent, D. E. (1958). Perception and communication. New York: Pergamon Press.CrossRefGoogle Scholar
  10. Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Neuronal effects following working memory training. Developmental Psychology, 2, S167–S179. doi: 10.1016/j.dcn.2011.10.001.Google Scholar
  11. Cattell, R. B. (1949). Culture free intelligence test, scale 1, Handbook. Champaign: Institute of Personality and Ability.Google Scholar
  12. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects within a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. doi: 10.3758/PBR.17.2.193.CrossRefGoogle Scholar
  13. Colom, R., Quiroga, M. A., Shih, P. C., Martinez, K., Burgaleta, M., Martinez-Molina, A., et al. (2010). Improvement in working memory is not related to increased intelligence scores. Intelligence, 38, 497–505. doi: 10.1016/j.intell.2010.08.002.CrossRefGoogle Scholar
  14. Conway, A. R. A., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: the importance of working memory capacity. Psychonomic Bulletin & Review, 8(2), 331–335. doi: 10.3758/BF03196169.CrossRefGoogle Scholar
  15. Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.PubMedCrossRefGoogle Scholar
  16. Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 12, 1127–1133. doi: 10.3758/BF03196811.Google Scholar
  17. Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008a). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512. doi: 10.1126/science.1155466.PubMedCrossRefGoogle Scholar
  18. Dahlin, E., Nyberg, L., Backman, L., & Neely, A. S. (2008b). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. doi: 10.1037/a0014296.PubMedCrossRefGoogle Scholar
  19. Dempster, F. N. (1988). The spacing effect: a case study in the failure to apply the results of psychological research. American Psychologist, 43(8), 627–634. doi: 10.1037//0003-066X.43.8.627.CrossRefGoogle Scholar
  20. Ebbinghaus, H. E. (1885/1913). Memory: A contribution to experimental psychology. New York: Dover.Google Scholar
  21. Engle, R. W. (2001). What is working-memory capacity? In H. L. Roediger & J. S. Nairne (Eds.), Nature of Remembering: Essays in Honor of Robert G. Crowder (pp. 297–314). Washington: American Psychological Association.CrossRefGoogle Scholar
  22. Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: mechanisms of active maintenance and executive control (pp. 102–134). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143–149. doi: 10.3758/BF03203267.CrossRefGoogle Scholar
  24. Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. Journal of Neuroscience, 29(27), 8726–8733. doi: 10.1523/JNEUROSCI.2145-09.2009.PubMedCrossRefGoogle Scholar
  25. Fukuda, K., & Vogel, E. K. (2011). Individual differences in recovery time from attentional capture. Psychological Science, 22(3), 361–368. doi: 10.1177/0956797611398493.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fukuda, K., Vogel, E. K., Mayr, U., & Awh, E. (2010). Quantity not quality: the relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17(5), 673–679. doi: 10.3758/17.5.673.CrossRefGoogle Scholar
  27. Gaspar, J. G., Neider, M. B., Simons, D. S., McCarley, J. S., & Kramer, A. F. (2013). Change detection: training and transfer. PLoS One, 8(6), e67781. doi: 10.1371/journal.pone.0067781.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537. doi: 10.1038/nature01647.PubMedCrossRefGoogle Scholar
  29. Green, C. S., & Bavelier, D. (2006). Effect of action video games on the spatial distribution of visual attention. Journal of Experimental Psychology: Human Learning and Memory, 32(6), 1465–1478. doi: 10.1037/0096-1523.32.6.1465.Google Scholar
  30. Heitz, R. P., & Engle, R. W. (2007). Focusing the spotlight: individual differences in visual attention control. Journal of Experimental Psychology: General, 136(2), 217–240. doi: 10.1037/0096-3445.136.2.217.CrossRefGoogle Scholar
  31. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833. doi: 10.1073/pnas.0801268105.CrossRefGoogle Scholar
  32. Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010a). The concurrent validity of the n-back task as a working memory meausre. Memory, 18(4), 394–412.PubMedCrossRefGoogle Scholar
  33. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010b). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi: 10.1016/j.intell.2010.09.001.CrossRefGoogle Scholar
  34. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108(25), 11081–11086. doi: 10.1073/pnas.1103228108.CrossRefGoogle Scholar
  35. Jaušovec, N., & Jaušovec, K. (2012). Working memory training: improving intelligence—Changing brain activity. Brain and Cognition, 79, 96–106. doi: 10.1016/j.bandc.2012.02.007.PubMedCrossRefGoogle Scholar
  36. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal working memory load affects regional brain activation as measured by PET. Journal of Cognitive Neuroscience, 9(4), 462–475.PubMedCrossRefGoogle Scholar
  37. Kane, M. J., Brown, L. H., McVay, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007a). For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614–621. doi: 10.1111/j.1467-9280.2007.01948.x.PubMedCrossRefGoogle Scholar
  38. Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007b). Working memory, attention control, and the n-back task: a question of construct validity. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 615–622. doi: 10.1037/0278-7393.33.3.615.PubMedCrossRefGoogle Scholar
  39. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47–70. doi: 10.1037/0096-3445.132.1.47.CrossRefGoogle Scholar
  40. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The domain generality of working-memory capacity: a latent-variable approach to verbal and spatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217. doi: 10.1037/0096-3445.133.2.189.CrossRefGoogle Scholar
  41. Kerr, R., & Booth, B. (1978). Specific and varied practice of motor skill. Perceptual and Motor Skills, 46(2), 395–401.PubMedGoogle Scholar
  42. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 1–10. doi: 10.1162/089892902317205276.PubMedCrossRefGoogle Scholar
  43. Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. The Journal of Neuroscience, 33(20), 8705–8715. doi: 10.1523/JNEUROSCI.5565-12.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Li, S. C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742. doi: 10.1037/a0014343.PubMedCrossRefGoogle Scholar
  45. Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual n-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20, 135–141. doi: 10.3758/s12423-012-0335-6.CrossRefGoogle Scholar
  46. McDonald, J. H. (2008). Biological Statistics. Baltimore: Sparky House Publishing.Google Scholar
  47. McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27, 817–835. doi: 10.1037//0278-7393.27.3.817.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi: 10.1037/a0028228.PubMedGoogle Scholar
  49. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychological Bulletin & Review, 18, 46–60. doi: 10.3758/s13423-010-0034-0.CrossRefGoogle Scholar
  50. Morrison, A. B., & Chein, J. M. (2012). The controversy over Cogmed. Journal of Applied Research in Memory and Cognition, 1(3), 208–210. doi: 10.1016/j.jarmac.2012.07.005.CrossRefGoogle Scholar
  51. Motulsky, H. (2010). Multiple comparisons concepts. In Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking (Vol. 2, pp. 157–168). New York: Oxford University Press, Inc.Google Scholar
  52. Neill, W., Valdes, L., & Terry, K. (1994). Selective attention and the inhibitory control of cognition. In F. N. Dempster & C. Brainerd (Eds.), New perspectives on interference and inhibition in cognition. New York: Academic Press.Google Scholar
  53. O’Donnell, R. D., Moise, S., & Schmidt, R. M. (2005). Generating performance test batteries relevant to specific operational tasks. Aviation, Space and Environmental Medicine, 76(7), C24–C30.Google Scholar
  54. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. doi: 10.1038/nn1165.PubMedCrossRefGoogle Scholar
  55. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), 775–779. doi: 10.1038/nature09042.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Owens, M., Koster, E. H. W., & Derakshan, N. (2013). Improving attentional control in dysphoria through cognitive training: transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50(3), 297–307. doi: 10.1111/psyp.12010.PubMedCrossRefGoogle Scholar
  57. Pashler, H., Rohrer, D., Cepeda, N. J., & Carpenter, S. K. (2007). Enhancing learning and retarding forgetting: choices and consequences. Psychonomic Bulletin & Review, 14(2), 187–193. doi: 10.3758/BF03194050.CrossRefGoogle Scholar
  58. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2012). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. doi: 10.1037/a0029082.CrossRefGoogle Scholar
  59. Rogers, W. A. (1996). Assessing age-related differences in the long-term retention of skills. In W. A. Rogers, A. D. Fisk, & N. Walker (Eds.), Aging and skilled performance: Advances in theory and application (pp. 185–200). Hillsdale: Erlbaum.Google Scholar
  60. Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X., & Lee, A. C. H. (2012). A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS One, 7(11), e50431. doi: 10.1371/journal.pone.0050431.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217. doi: 10.1111/j.1467-9280.1992.tb00029.x.CrossRefGoogle Scholar
  62. Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study Frontiers in Aging. Neuroscience, 2(27), 1–10. doi: 10.3389/fnagi.2010.00027.Google Scholar
  63. Schneider, W., & Chen, J. M. (2003). Controlled and automatic processing: behavior, theory, and biological mechanisms. Cognitive Science, 27, 525–559.CrossRefGoogle Scholar
  64. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime User’s Guide. Pittsburgh: Psychology Software Tools Inc.Google Scholar
  65. Schneiders, J. A., Opitz, B., Krick, C. M., & Mecklinger, A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 21(11), 2555–2564. doi: 10.1093/cercor/bhr037.PubMedCrossRefGoogle Scholar
  66. Schneiders, J. A., Opitz, B., Tang, H., Deng, Y., Xie, C. X., Li, H., et al. (2012). The impact of auditory working memory training on the fronto-parietal working memory network. Frontiers in Human Neuroscience, 6, 173. doi: 10.3389/fnhum.2012.00173.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Scolari, M., Vogel, E. K., & Awh, E. (2008). Perceptual expertise enhances the resolution but not the number of representations in working memory. Psychonomic Bulletin & Review, 15(1), 215–222. doi: 10.3758/pbr.15.1.215.CrossRefGoogle Scholar
  68. Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179–187. doi: 10.1037//0278-7393.5.2.179.Google Scholar
  69. Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50, 245–276.CrossRefGoogle Scholar
  70. Thorell, L. B., Lindqvist, S., Nutley, S. B., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. doi: 10.1111/j.1467-7687.2008.00745.x.PubMedCrossRefGoogle Scholar
  71. Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? Journal of Memory and Language, 28, 127–154. doi: 10.1016/0749-596X(89)90040-5.CrossRefGoogle Scholar
  72. Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. [Research Support, U.S. Gov’t, Non-P.H.S.]. Behavior Research Methods, 37(3), 498–505. doi: 10.3758/BF03192720.PubMedCrossRefGoogle Scholar
  73. Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working memory capacity and the antisaccade task: individual differences in voluntary saccade control. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(6), 1302–1321. doi: 10.1037/0278-7393.30.6.1302.PubMedCrossRefGoogle Scholar
  74. Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: attention control, secondary memory, or both? A direct test of the dual-component model. Journal of Memory and Language, 62, 392–406. doi: 10.1016/j.jml.2010.02.001.CrossRefGoogle Scholar
  75. Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: how to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10(6), 1322–1337. doi: 10.1037/0278-7393.30.6.1322.CrossRefGoogle Scholar
  76. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. doi: 10.1038/nature04171.PubMedCrossRefGoogle Scholar
  77. Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory—a single-subject analysis. Physiology & Behavior, 92, 186–192. doi: 10.1016/j.physbeh.2007.05.041.CrossRefGoogle Scholar
  78. Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., et al. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296(23), 2805–2814. doi: 10.1001/jama.296.23.2805.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. doi: 10.1038/nature06860.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science,. doi: 10.1111/j.1467-9280.2009.02322.x.PubMedCentralGoogle Scholar
  81. Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22(11), 1434–1441. doi: 10.1177/0956797611417006.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zimmer, H. D., Popp, C., Reith, W., & Krick, C. M. (2012). Gains of item-specific training in visual working memory and their neural correlates. Brain Research, 1466, 44–55. doi: 10.1016/j.brainres.2012.05.019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hillary Schwarb
    • 1
    Email author
  • Jayde Nail
    • 2
  • Eric H. Schumacher
    • 2
  1. 1.Beckman InstituteUniversity of IllinoisUrbanaUSA
  2. 2.School of PsychologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations