Psychological Research

, Volume 79, Issue 5, pp 729–738 | Cite as

The effect of expert knowledge on medical search: medical experts have specialized abilities for detecting serious lesions

  • Ryoichi Nakashima
  • Chisaki Watanabe
  • Eriko Maeda
  • Takeharu Yoshikawa
  • Izuru Matsuda
  • Soichiro Miki
  • Kazuhiko Yokosawa
Original Article

Abstract

How does domain-specific knowledge influence the experts’ performance in their domain of expertise? Specifically, can visual search experts find, with uniform efficiency, any type of target in their domain of expertise? We examined whether acquired knowledge of target importance influences an expert’s visual search performance. In some professional searches (e.g., medical screenings), certain targets are rare; one aim of this study was to examine the extent to which experts miss such targets in their searches. In one experiment, radiologists (medical experts) engaged in a medical lesion search task in which both the importance (i.e., seriousness/gravity) and the prevalence of targets varied. Results showed decreased target detection rates in the low prevalence conditions (i.e., the prevalence effect). Also, experts were better at detecting important (versus unimportant) lesions. Results of an experiment using novices ruled out the possibility that decreased performance with unimportant targets was due to low target noticeability/visibility. Overall, the findings suggest that radiologists do not have a generalized ability to detect any type of lesion; instead, they have acquired a specialized ability to detect only those important lesions relevant for effective medical practices.

References

  1. Allard, F., Graham, S., & Paarsalu, M. E. (1980). Perception in sport: basketball. Journal of Sport Psychology, 2, 14–21.Google Scholar
  2. Asano, M., Kanaya, S., & Yokosawa, K. (2008). Proofreaders show a generalized ability to allocate spatial attention to detect changes. Psychologia, 51, 126–141.CrossRefGoogle Scholar
  3. Bédard, J., & Chi, M. T. H. (1992). Expertise. Current Direction Psychological Science, 1, 135–139.CrossRefGoogle Scholar
  4. Berbaum, K. S., Franklin, E. A. J., Caldwell, R. T., & Schartz, K. M. (2010). Satisfaction of search in traditional radiographic imaging. In E. Samei & E. Krupinski (Eds.), The handbook of medical image perception and techniques (pp. 107–138). Cambridge: Cambridge University Press.Google Scholar
  5. Bowditch, R. (1996). Patterns found in false negative cervical cytology. Cytoletter, 3, 22–25.Google Scholar
  6. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443–446.CrossRefGoogle Scholar
  7. Brawley, O. W., & Kramer, B. S. (2005). Cancer screening in theory and practice. Journal of Clinical Oncology, 23, 293–300.CrossRefPubMedGoogle Scholar
  8. Carmody, D. P., Nodine, C. F., & Kundel, H. L. (1981). Finding lung nodules with and without comparative visual scanning. Perception and Psychophysics, 29, 594–598.CrossRefPubMedGoogle Scholar
  9. Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. The Psychology of Learning and Motivation, 16, 1–58.CrossRefGoogle Scholar
  10. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.CrossRefGoogle Scholar
  11. Davies, D. R., & Parasuraman, R. (1982). The psychology of vigilance. London: Academic Press.Google Scholar
  12. DeMay, R. M. (1997). Common problems in Papanicolaou smear interpretation. Archives of Pathology and Laboratory Medicine, 121, 229–238.PubMedGoogle Scholar
  13. Evans, K. K., Birdwell, R. L., & Wolfe, J. M. (2013a). If you don’t find it often, you often don’t find it: why some cancers are missed in breast cancer screening. PLoS ONE, 8(5), e64366.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Evans, K. K., Cohen, M. A., Tambouret, R., Horowitz, T., Kreindel, E., & Wolfe, J. M. (2011a). Does visual expertise improve visual recognition memory? Attention, Perception, & Psychophysics, 73, 30–35.CrossRefGoogle Scholar
  15. Evans, K. K., Evered, A., Tambouret, R. H., Wilbur, D. C., & Wolfe, J. M. (2011b). Prevalence of abnormalities influences cytologists’ error rates in screening for cervical cancer. Archives of Pathology and Laboratory Medicine, 135, 1557–1560.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Evans, K. K., Georgian-Smith, D., Tambouret, R., Birdwell, R. L., & Wolfe, J. M. (2013b). The gist of the abnormal: above-chance medical decision making in the blink of an eye. Psychonomic Bulletin & Review, 20, 1170–1175.CrossRefGoogle Scholar
  17. Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18, 943–947.CrossRefPubMedGoogle Scholar
  18. Fleck, M. S., Samei, E., & Mitroff, S. R. (2010). Generalized “satisfaction of search”: adverse influences on dual-target search accuracy. Journal of Experimental Psychology: Applied, 16, 60–71.PubMedGoogle Scholar
  19. Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. The Journal of Neuroscience, 30, 11096–11103.CrossRefPubMedGoogle Scholar
  20. Hickey, C., Chelazzi, L., & Theeuwes, J. (2011). Reward has a residual impact on target selection in visual search, but not on the suppression of distractors. Visual Cognition, 19, 117–128.CrossRefGoogle Scholar
  21. Hommel, B., Li, Z. H., & Li, S. C. (2004). Visual search across the life span. Developmental Psychology, 40, 545–558.CrossRefPubMedGoogle Scholar
  22. Humphreys, D. G., & Kramer, A. F. (1997). Age differences in visual search for feature, conjunction, and triple-conjunction targets. Psychology and Aging, 12, 704–717.CrossRefGoogle Scholar
  23. Ishibashi, K., Kita, S., & Wolfe, J. M. (2012). The effects of local prevalence and explicit expectations on search termination times. Attention, Perception, & Psychophysics, 74, 115–123.CrossRefGoogle Scholar
  24. Krupinski, E. A. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 72, 1205–1217.CrossRefGoogle Scholar
  25. Kundel, H. L. (2006). History of research in medical image perception. Journal of the American College of Radiology, 3, 402–408.CrossRefPubMedGoogle Scholar
  26. Kundel, H. L., Nodine, C. F., & Carmody, D. P. (1978). Visual scanning, pattern recognition, and decision-making in pulmonary nodule detection. Investigative Radiology, 13, 175–181.CrossRefPubMedGoogle Scholar
  27. Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s guide. Cambridge: Cambridge University Press.Google Scholar
  28. Maeda, E., Yoshikawa, T., Nakashima, R., Kobayashi, K., Yokosawa, K., Hayashi, N., et al. (2013). Experimental system for measurement of radiologists’ performance by visual search task. Springer Plus, 2(607), 1–6.Google Scholar
  29. Menneer, T., Barrett, D. J. K., Phillips, L., Donnelly, N., & Cave, K. R. (2004). Search efficiency for multiple targets. Cognitive Technology, 9, 22–25.Google Scholar
  30. Menneer, T., Barrett, D. J. K., Phillips, L., Donnelly, N., & Cave, K. R. (2007). Costs in searching for two targets: dividing search across target types could improve airport security screening. Applied Cognitive Psychology, 21, 915–932.CrossRefGoogle Scholar
  31. Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: the effect of practice and target similarity. Journal of Experimental Psychology: Applied, 15, 125–139.PubMedGoogle Scholar
  32. Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8, 283–298.CrossRefPubMedGoogle Scholar
  33. Nakashima, R., Kobayashi, K., Maeda, E., Yoshikawa, T., & Yokosawa, K. (2013). Visual search of experts in medical image reading: the effect of training, target prevalence, and expert knowledge. Frontiers in Psychology, 4(166), 1–8.Google Scholar
  34. Neider, M. B., & Zelinsky, G. J. (2006). Searching for camouflaged targets: effects of target-background similarity on visual search. Vision Research, 46, 2217–2235.CrossRefPubMedGoogle Scholar
  35. Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.-J. (2011). Erroneous analyses of interactions in neuroscience: a problem of significance. Nature Neuroscience, 14, 1105–1107.CrossRefPubMedGoogle Scholar
  36. Oestmann, J. W., Greene, R., Kushner, D. C., Bourgouin, P. M., Linetsky, L., & Llewellyn, H. J. (1988). Lung lesions: correlation between viewing time and detection. Radiology, 166, 451–453.CrossRefPubMedGoogle Scholar
  37. Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision, 5, 376–404.CrossRefPubMedGoogle Scholar
  38. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefPubMedGoogle Scholar
  39. Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15), 1–17.CrossRefPubMedGoogle Scholar
  40. Sowden, P. T., Davies, I. R. L., & Roling, P. (2000). Perceptual learning of the detection of features in X-ray images: a functional role for improvements in adults’ visual sensitivity? Journal of Experimental Psychology: Human Perception and Performance, 26, 379–390.PubMedGoogle Scholar
  41. Trick, L. M., & Enns, J. T. (1998). Lifespan changes in attention: the visual search task. Cognitive Development, 13, 369–386.CrossRefGoogle Scholar
  42. Van Wert, M. J., Horowitz, T. S., & Wolfe, J. M. (2009). Even in correctable search, some types of rare targets are frequently missed. Attention, Perception, & Psychophysics, 71, 541–553.Google Scholar
  43. Voss, J. F., Vesonder, G. T., & Spilich, G. J. (1980). Text generation and recall by high-knowledge and low-knowledge individuals. Journal of Verbal Learning and Verbal Behavior, 19, 651–667.CrossRefGoogle Scholar
  44. Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and is stressful. Human Factors, 50, 433–441.CrossRefPubMedGoogle Scholar
  45. Wolfe, J. M., Brunelli, D. N., Rubinstein, J., & Horowitz, T. S. (2013). Prevalence effects in newly trained airport checkpoint screeners: trained observers miss rare targets, too. Journal of Vision, 13(3), 1–9.CrossRefGoogle Scholar
  46. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435, 439–440.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136, 623–638.CrossRefGoogle Scholar
  48. Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20, 121–124.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Yantis, S., Anderson, B. A., Wampler, E. K., & Laurent, P. A. (2012). Reward and attentional control in visual search. In M. D. Dodd & J. H. Flowers (Eds.), Nebraska symposium on motivation: The influence of attention, learning, and motivation on visual search (pp. 91–116). New York: Springer.CrossRefGoogle Scholar
  50. Zenger, B., & Fahle, M. (1997). Missed targets are more frequent than false alarms: a model for error rates in visual search. Journal of Experimental Psychology: Human Perception and Performance, 23, 1783–1791.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ryoichi Nakashima
    • 1
  • Chisaki Watanabe
    • 1
  • Eriko Maeda
    • 2
  • Takeharu Yoshikawa
    • 2
  • Izuru Matsuda
    • 2
  • Soichiro Miki
    • 2
  • Kazuhiko Yokosawa
    • 1
  1. 1.Department of Psychology, Graduate School of Humanities and SocietyThe University of TokyoTokyoJapan
  2. 2.The University of Tokyo HospitalTokyoJapan

Personalised recommendations