Psychological Research

, Volume 79, Issue 5, pp 773–784 | Cite as

Simple arithmetic: evidence of an inhibitory mechanism to select arithmetic facts

Original Article

Abstract

In two experiments we evaluated the coactivation of arithmetic facts and the possible inhibitory mechanism used to select the correct one. To this end, we introduced an adapted version of the negative priming paradigm in which participants received additions and they decided whether they were correct or not. When the addition was incorrect but the result was that of multiplying the operands (e.g., 2 + 4 = 8), participants took more time to respond relative to control additions with unrelated results. This finding corroborated that participants coactivated arithmetic facts of multiplications even when they were irrelevant to perform the task. Moreover, the participants were slower to respond to an addition whose result was that of multiplying the operands of the previous trial (e.g., 2 + 6 = 8). These results support the existence of an inhibitory mechanism involved in the selection of arithmetic facts.

References

  1. Anderson, J. R. (1974). Retrieval of propositional information from long–term memory. Cognitive Psychology, 6, 451–474. doi:10.1016/0010-0285(74)90021-8.CrossRefGoogle Scholar
  2. Anderson, M. C. (2003). Rethinking interference theory: executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445. doi:10.1016/j.jml.2003.08.006.CrossRefGoogle Scholar
  3. Anderson, M., Bjork, R., & Bjork, E. (1994). Remembering can cause forgetting: retrieval dynamics in long–term memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20, 1063–1087. doi:10.1037/0278-7393.20.5.1063.CrossRefPubMedGoogle Scholar
  4. Arbuthnott, K., & Campbell, J. I. D. (2000). Cognitive inhibition in selection and sequential retrieval. Memory & Cognition, 28, 331–340. doi:10.3758/BF03198548.CrossRefGoogle Scholar
  5. Arbuthnott, K., & Campbell, J. I. D. (2003). The locus of self-inhibition in sequential retrieval. European Journal of Cognitive Psychology, 15, 177–194. doi:10.1080/09541440244000067.CrossRefGoogle Scholar
  6. Ashcraft, M. H. (1987). Children’s knowledge of simple arithmetic: A developmental model and simulation. In J. Bisanz, C.J. Brainerd, & R. Kail (Eds.), Formal methods in developmental psychology: Progress in cognitive development research (pp. 302–338). New York: Springer.Google Scholar
  7. Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44, 75–106. doi:10.1016/0010-0277(92)90051-I.CrossRefPubMedGoogle Scholar
  8. Barrouillet, P., & Thevenot, C. (2013). On the problem–size effect in small additions: can we really discard any counting–based account? Cognition, 128, 35–44. doi:10.1016/j.cognition.2013.02.018.CrossRefPubMedGoogle Scholar
  9. Campbell, J. I. D., & Arbuthnott, K. (1996). Inhibitory processes in sequential retrieval: evidence from variable-lag repetition priming. Brain and Cognition, 30, 59–80. doi:10.1006/brcg.1996.0005.CrossRefPubMedGoogle Scholar
  10. Campbell, J. I. D., & Arbuthnott, K. (2010). Effects of mixing and cuing simple addition and multiplication. European Journal of Cognitive Psychology, 22, 422–442. doi:10.1080/09541440902903629.CrossRefGoogle Scholar
  11. Campbell, J., & Dowd, R. (2012). Inter–operation transfer in Chinese-English bilinguals` arithmetic. Psychonomic Bulletin & Review, 19, 948–954. doi:10.3758/s13423-012-0277-z.CrossRefGoogle Scholar
  12. Campbell, J., & Graham, D. J. (1985). Mental multiplication skill: structure, process and acquisition. Canadian Journal of Psychology, 39, 338–366. doi:10.1037/h0080065.CrossRefGoogle Scholar
  13. Campbell, J., & Thompson, V. (2012). Retrieval–induced forgetting of arithmetic facts. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 118–129. doi:10.1037/a0025056.CrossRefPubMedGoogle Scholar
  14. Campbell, J., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299–315. doi:10.1037/0096-3445.130.2.299.CrossRefGoogle Scholar
  15. Censabella, S., & Noël, M. P. (2004). Interference in arithmetic facts: are active suppression processes involved when performing simple mental arithmetic? Cahiers de Psychologie Cognitive, 22, 635–671.Google Scholar
  16. Colomé, A., Bafalluy, M. G., & Noël, M. P. (2011). Getting to the source: a questionnaire on the learning and use of arithmetical operations. Psicológica, 32, 223–253.Google Scholar
  17. Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123, 392–403. doi:10.1016/j.cognition.2012.02.008.CrossRefPubMedGoogle Scholar
  18. Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., & Ebner, F. (2013). The function of the left angular gyrus in mental arithmetic: evidence from the associative confusion effect. Human Brain Mapping, 24, 1013–1024. doi:10.1002/hbm.21489.CrossRefGoogle Scholar
  19. Green, D. W. (1998). Mental control of the bilingual lexico–semantic system. Bilingualism: Language and Cognition, 1, 67–81. doi:10.1017/S1366728998000133.CrossRefGoogle Scholar
  20. Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79, 329–343.CrossRefGoogle Scholar
  21. Huber, S., Mann, A., Nuerk, H. C., & Moeller, K. (2014). Cognitive control in number magnitude processing—evidence from eye-tracking. Psychological Research, 78, 539–548. doi:10.1007/s00426-013-0504-x.CrossRefPubMedGoogle Scholar
  22. Kroll, J. F., Bobb, S. C., & Wodniecka, Z. (2006). Language selectivity is the exception, not the rule: arguments against a fixed locus of language selection in bilingual speech. Bilingualism: Language and Cognition, 9, 119–135. doi:10.1017/S1366728906002483.CrossRefGoogle Scholar
  23. LeFreve, J.-A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: reassessing the problem size effect in adults. Journal of Experimental Psychology. Learning, Memory, and Cognition, 22, 216–230. doi:10.1037/0278-7393.22.1.216.CrossRefGoogle Scholar
  24. Lemaire, P., Fayol, M., & Abdi, H. (1991). Associative confusion effect in cognitive arithmetic: evidence for partially autonomous processes. Current Psychology of Cognition, 11, 587–604.Google Scholar
  25. Macizo, P., Bajo, T., & Martín, M. (2010). Inhibitory processes in bilingual language comprehension: evidence from Spanish–English interlexical homographs. Journal of Memory and Language, 63, 232–244. doi:10.1016/j.jml.2010.04.002.CrossRefGoogle Scholar
  26. Macizo, P., & Herrera, A. (2011). Cognitive control in number processing: evidence from the unit–decade compatibility effect. Acta Psychologica, 136, 112–118. doi:10.1016/j.actpsy.2010.10.008.CrossRefPubMedGoogle Scholar
  27. Macizo, P., & Herrera, A. (2013). The processing of Arabic numbers is under cognitive control. Psychological Research, 77, 651–658. doi:10.1007/s00426-012-0456-6.CrossRefPubMedGoogle Scholar
  28. Radvansky, G. A., Zacks, R. T., & Hasher, L. (1996). Fact retrieval in younger and older adults: the role of mental models. Psychology and Aging, 11, 258–271. doi:10.1037/0882-7974.11.2.258.CrossRefPubMedGoogle Scholar
  29. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E–Prime user´s guide (Version 1.1). Pittsburg: Psychology Software Tools.Google Scholar
  30. Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: how do children know what to do? In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–293). Hillsdale: Erlbaum.Google Scholar
  31. Tipper, S. P., & Driver, J. (1988). Negative priming between pictures and words in a selective attention task: evidence for semantic processing of ignored stimuli. Memory and Cognition, 16, 64–70.CrossRefPubMedGoogle Scholar
  32. Whalen, J. (2000). The influence of semantic number representations on arithmetic fact retrieval. PhD thesis, Baltimore: Johns Hopkins University, Baltimore.Google Scholar
  33. Winkelman, J. H., & Schmidt, J. (1974). Associative confusions in mental arithmetic. Journal of Experimental Psychology, 102, 734–736.CrossRefGoogle Scholar
  34. Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: a case study of arithmetic. Journal of Experimental Psychology, 115, 118–131.CrossRefPubMedGoogle Scholar
  35. Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: the problem size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331–346). New York: Psychology Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patricia Megías
    • 1
  • Pedro Macizo
    • 1
  • Amparo Herrera
    • 2
  1. 1.Departamento de Psicología Experimental, Facultad de PsicologíaUniversidad de GranadaGranadaSpain
  2. 2.University of MurciaMurciaSpain

Personalised recommendations