Motor contagion: the contribution of trajectory and end-points

Abstract

Increased involuntary arm movement deviation when observing an incongruent human arm movement has been interpreted as a strong indicator of motor contagion. Here, we examined the contribution of trajectory and end-point information on motor contagion by altering congruence between the stimulus and arm movement. Participants performed cyclical horizontal arm movements whilst simultaneously observing a stimulus representing human arm movement. The stimuli comprised congruent horizontal movements or vertical movements featuring incongruent trajectory and end-points. A novel, third, stimulus comprised curvilinear movements featuring congruent end-points, but an incongruent trajectory. In Experiment 1, our dependent variables indicated increased motor contagion when observing the vertical compared to horizontal movement stimulus. There was even greater motor contagion in the curvilinear stimulus condition indicating an additive effect of an incongruent trajectory comprising congruent end-points. In Experiment 2, this additive effect was also present when facing perpendicular to the display, and thus with end-points represented as a product of the movement rather than an external spatial reference. Together, these findings support the theory of event coding (Hommel et al., Behav Brain Sci 24:849–878, 2001), and the prediction that increased motor contagion takes place when observed and executed actions share common features (i.e., movement end-points).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    In this instance, congruency of trajectory was defined by movement differences in the vertical axis. The additional movement in the vertical axis for the curvilinear stimulus was clearly different from the horizontal stimulus, and thus was conceived as an incongruent trajectory.

References

  1. Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267. doi:10.1016/j.neuropsychologia.2004.11.012.

    PubMed  Article  Google Scholar 

  2. Boria, S., Fabbri-Destro, M., Cattaneo, L., Sparaci, L., Sinigaglia, C., Santelli, E., Rizzolatti, G. (2009). Intention understanding in autism. PLoS ONE, 4, e5596. doi:10.1371/journal.pone.0005596.

  3. Brass, M., Bekkering, H., Wohlschläger, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial and imitative cues. Brain and Cognition, 44, 124–143. doi:10.1006/brcg.2000.1225.

    PubMed  Article  Google Scholar 

  4. Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral Cortex, 20, 2252–2258. doi:10.1093/cercor/bhp291.

    PubMed  Article  Google Scholar 

  5. Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effects: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910. doi:10.1037//0022-3514.76.6.893.

    PubMed  Article  Google Scholar 

  6. Csibra, G. (2007). Action mirroring and action understanding: An alternative account. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition, attention and performance XXII (pp. 435–459). Oxford: Oxford University Press.

    Google Scholar 

  7. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176–180. http://link.springer.com/journal/221/91/1/page/1.

  8. Dijkerman, H. C., & Smit, M. C. (2007). Interference of grasping observation during prehension, a behavioural study. Experimental Brain Research, 176, 387–396. doi:10.1007/s00221-006-0627-z.

    PubMed  Article  Google Scholar 

  9. Gowen, E., Stanley, J., & Miall, R. C. (2008). Movement interference in autism-spectrum disorder. Neuropsychologia, 46, 1060–1068. doi:10.1016/j.neuropsychologia.2007.11.004.

    PubMed  Article  Google Scholar 

  10. Grafton, S. T., & Hamilton, A. F. (2007). Evidence of a distributed hierarchy of action representation in the brain. Human Movement Science, 26, 590–616. doi:10.1016/j.humov.2007.05.009.

    PubMed Central  PubMed  Article  Google Scholar 

  11. Hamilton, A. F. D., & Grafton, S. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133–1137. doi:10.1523/JNEUROSCI.4551-05.2006.

    PubMed  Article  Google Scholar 

  12. Hardwick, R. M., & Edwards, M. G. (2011). Observed reach trajectory influences executed reach kinematics in prehension. Quarterly Journal of Experimental Psychology, 64, 1082–1093. doi:10.1080/17470218.2010.538068.

    Article  Google Scholar 

  13. Hardwick, R. M., & Edwards, M. G. (2012). Motor interference and facilitation arising from observed movement kinematics. Quarterly Journal of Experimental Psychology, 65, 840–847. doi:10.1080/17470218.2012.672995.

    Article  Google Scholar 

  14. Hayes, S. J., Ashford, D., & Bennett, S. J. (2008). Goal-directed imitation: The means to an end. Acta Psychologica, 131, 202–208. doi:10.1016/j.actpsy.2009.05.002.

    Article  Google Scholar 

  15. Heyes, C., Bird, G., Johnson, H., & Haggard, P. (2005). Experience modulates automatic imitation. Cognitive Brain Research, 22, 233–240. doi:10.1016/j.cogbrainres2004.09.009.

    PubMed  Article  Google Scholar 

  16. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. doi:10.1017/S0140525X01000103.

    PubMed  Article  Google Scholar 

  17. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2568. doi:10.1126/science.286.5449.2526.

    PubMed  Article  Google Scholar 

  18. Jansson, E., Wilson, A. D., Williams, J. H. G., & Mon-Williams, M. (2007). Methodological problems undermine tests of ideo-motor conjecture. Experimental Brain Research, 182, 549–558. doi:10.1007/s00221-007-1013-1.

    PubMed  Article  Google Scholar 

  19. Khan, M. A., Franks, I. M., & Goodman, D. (1998). The effect of practice on the control of rapid aiming movement: Evidence for an interdependency between programming and feedback processing. The Quarterly Journal of Experimental Psychology, 51A, 425–444. doi:10.1080/713755756.

    Article  Google Scholar 

  20. Kilner, J. M., Hamilton, A. F., & Blakemore, S. J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2, 158–166. doi:10.1080/17470910701428190.

    PubMed  Article  Google Scholar 

  21. Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525. doi:10.1080/17470910701428190.

    PubMed  Article  Google Scholar 

  22. Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46, 153–160. doi:10.1016/j.neuron.2005.02.009.

    PubMed  Article  Google Scholar 

  23. Ocampo, B., Painter, D. R., & Kritikos, A. (2012). Event coding and motor priming: how attentional modulation may influence binding across action properties. Experimental Brain Research, 219, 139–150. doi:10.1007/s00221-012-3073-0.

    PubMed  Article  Google Scholar 

  24. Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience and Biobehavioural Reviews, 35, 1410–1418. doi:10.1016/j.neubiorev.2011.03.004.

    Article  Google Scholar 

  25. Press, C., Bird, G., Walsh, E., & Heyes, C. (2008). Automatic imitation of intransitive actions. Brain and Cognition, 67, 44–50. doi:10.1016/j.bandc.2007.11.001.

    PubMed  Article  Google Scholar 

  26. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154. doi:10.1080/713752551.

    Article  Google Scholar 

  27. Richardson, M. J., Campbell, W. L., & Schmidt, R. C. (2009). Movement interference during action observation as emergent coordination. Neuroscience Letters, 449, 117–122. doi:10.1016/j.neulet.2008.10.092.

    PubMed  Article  Google Scholar 

  28. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670. doi:10.1038/35090060.

    PubMed  Article  Google Scholar 

  29. Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915–926. doi:10.1037/0096-1523.33.4.915.

    PubMed Central  PubMed  Google Scholar 

  30. Wohlschläger, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society of London B, 358, 501–515. doi:10.1098/rstb.2002.1257.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James W. Roberts.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, J.W., Hayes, S.J., Uji, M. et al. Motor contagion: the contribution of trajectory and end-points. Psychological Research 79, 621–629 (2015). https://doi.org/10.1007/s00426-014-0589-x

Download citation

Keywords

  • Action Feature
  • Perpendicular Orientation
  • Incongruent Stimulus
  • Motor Contagion
  • Horizontal Condition