Skip to main content
Log in

Response to period shifts in tapping and circle drawing: a window into event and emergent components of continuous movement

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Synchronization of movement to a metronome is a well-studied task for both discretely and smoothly produced rhythmic movement. In particular, behavioral responses to unexpected changes in a regular metronome can reveal both the strength and the completeness of error correction mechanisms and temporal control. Clock-like control is exhibited by discretely produced movement and movement with discrete perceptual information, whereas smoothly produced movement does not rely on internal clock mechanisms. Documented differences in error correction between discretely and smoothly produced movements have been attributed to this different underlying control. In this study, error correction mechanisms were examined by inducing changes in the pace of rhythmic movement. An overshoot response following the pace change for both tapping and circle drawing is documented, and suggests the presence of phase and period correction in both tasks. The presence of phase correction in circle drawing also suggests that clock and non-clock timing may co-exist within the same movement. Furthermore, a sub-group of participants emerged who appropriately changed pace, but were not able to correct the phasing of their movement while performing the circle drawing task, supporting that phase and period maintenance in timing are independently controlled processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baer, L. H., Thibodeau, J. L., Gralnick, T. M., Li, K. Z., & Penhune, V. B. (2013). The role of musical training in emergent and event-based timing. Frontiers in Human Neuroscience, 7, 191.

    Article  PubMed Central  PubMed  Google Scholar 

  • Collins, D. F., Refshauge, K. M., Todd, G., & Gandevia, S. C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 94, 1699–1706.

    Article  PubMed  Google Scholar 

  • Delignières, D., & Torre, K. (2011). Event-based and emergent timing: dichotomy or continuum? A reply to Repp and Steinman (2010). Journal of Motor Behavior, 43, 311–318.

    Article  PubMed  Google Scholar 

  • Elliott, M. T., Welchman, A. E., & Wing, A. M. (2009). Being discrete helps keeps to the beat. Experimental Brain Research, 192, 731–737.

    Article  PubMed  Google Scholar 

  • Hary, D., & Moore, G. P. (1985). Temporal tracking and synchronization strategies. Human Neurobiology, 4, 73–77.

    PubMed  Google Scholar 

  • Huys, R., Studenka, B. E., Rheaume, N. L., Zelaznik, H. N., & Jirsa, V. K. (2008). Distinct timing mechanisms produce discrete and continuous movements. PLoS Computational Biology, 4, e1000061.

    Article  PubMed Central  PubMed  Google Scholar 

  • Huys, R., Studenka, B. E., Zelaznik, H. N., & Jirsa, V. K. (2010). Distinct timing mechanisms are implicated in distinct circle drawing tasks. Neuroscience Letters, 472, 24–28.

    Article  PubMed  Google Scholar 

  • Loehr, J. D., Large, E. W., & Palmer, C. (2011). Temporal coordination and adaptation to rate change in music performance. Journal of Experimental Psychology: Human Perception and Performance, 37, 1292–1309.

    PubMed  Google Scholar 

  • Lorås, H., Sigmundsson, H., Talcott, J. B., Öhberg, F. O., & Stensdotter, A. K. (2012). Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals. Experimental Brain Research, 220, 335–347.

    Article  PubMed  Google Scholar 

  • Mates, J. (1994a). A model of synchronisation of motor acts to a stimulus sequence. I. Timing and error corrections. Biological Cybernetics, 70, 463–473.

    Article  PubMed  Google Scholar 

  • Mates, J. (1994b). A model of synchronisation of motor acts to a stimulus sequence. II. Stability analysis, error estimation and simulations. Biological Cybernetics, 70, 475–484.

    Article  PubMed  Google Scholar 

  • Proske, U., Schaible, H. G., & Schmidt, R. F. (1988). Joint receptors and kinaesthesia. Experimental Brain Research, 72, 219–224.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2000). Compensation for subliminal timing perturbations in perceptual- motor synchronization. Psychological Research-Psychologische Forschung, 63, 106–128.

    Article  Google Scholar 

  • Repp, B. H. (2001a). Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 27, 600–621.

    PubMed  Google Scholar 

  • Repp, B. H. (2001b). Processes underlying adaptation to tempo changes in sensorimotor synchronization. Human Movement Science, 20, 277–312.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (2008). Perfect phase correction in synchronization with slow auditory sequences. Journal of Motor Behavior, 40, 363–367.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Quarterly Journal of Experimental Psychology, 57, 499–521.

    Article  PubMed  Google Scholar 

  • Repp, B. H., & Steinman, S. R. (2010). Simultaneous event-based and emergent timing: synchronization, continuation, and phase correction. Journal of Motor Behavior, 42, 111–126.

    Article  PubMed  Google Scholar 

  • Robertson, S., Zelaznik, H., Lantero, D., Gadacz, K., Spencer, R., Doffin, J., et al. (1999). Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. Journal of Experimental Psychology: Human Perception and Performance, 25, 1316–1330.

    PubMed  Google Scholar 

  • Schöner, G. (2002). Timing, clocks, and dynamical systems. Brain and Cognition, 48, 31–51.

    Article  PubMed  Google Scholar 

  • Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 1437–1439.

    Article  PubMed  Google Scholar 

  • Studenka, B. E., & Zelaznik, H. N. (2011a). Synchronization in repetitive smooth movement requires perceptible events. Acta Psychologica, 136, 432–441.

    Article  PubMed  Google Scholar 

  • Studenka, B. E., & Zelaznik, H. N. (2011b). Emergently timed circle drawing does not exhibit auditory-motor synchronization. Journal of Motor Behavior, 43, 185–191.

    Article  PubMed  Google Scholar 

  • Studenka, B. E., Zelaznik, H. N., & Balasubramaniam, R. (2012). The distinction between tapping and circle drawing with and without tactile feedback: an examination of the sources of timing variance. The Quarterly Journal of Experimental Psychology, 65, 1086–1100.

    Article  PubMed  Google Scholar 

  • Teulings, H. L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146, 159–170.

    Article  PubMed  Google Scholar 

  • Thaut, M. H., Miller, R. A., & Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs. period correction. Biological Cybernetics, 79, 241–250.

    Article  PubMed  Google Scholar 

  • Torre, K., & Balasubramaniam, R. (2009). Two different processes for sensorimotor synchronization in continuous and discontinuous rhythmic movements. Experimental Brain Research, 199, 157–166.

    Article  PubMed  Google Scholar 

  • Torre, K., Balasubramaniam, R., & Delignières, D. (2010). Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling. Motor Control, 14, 323–343.

    PubMed  Google Scholar 

  • Torre, K., & Delignières, D. (2008). Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling. Acta Psychologica, 129, 284–296.

    Article  PubMed  Google Scholar 

  • Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception and Psychophysics, 14, 5–12.

    Article  Google Scholar 

  • Zelaznik, H. N., & Rosenbaum, D. A. (2010). Timing processes are correlated when tasks share a salient event. Journal of Experimental Psychology: Human Perception and Performance, 36, 1565–1575.

    PubMed  Google Scholar 

  • Zelaznik, H., Spencer, R. M. C., & Ivry, R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance, 28, 575–588.

    PubMed  Google Scholar 

  • Zelaznik, H. N., Spencer, R. M. C., Ivry, R. B., Baria, A., Bloom, M., Dolansky, L., et al. (2005). Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing. Journal of Motor Behavior, 37, 395–404.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breanna E. Studenka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Studenka, B.E. Response to period shifts in tapping and circle drawing: a window into event and emergent components of continuous movement. Psychological Research 79, 500–512 (2015). https://doi.org/10.1007/s00426-014-0578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0578-0

Keywords

Navigation