Skip to main content
Log in

Effects and mechanisms of working memory training: a review

Psychological Research Aims and scope Submit manuscript

Abstract

Can cognitive abilities such as reasoning be improved through working memory training? This question is still highly controversial, with prior studies providing contradictory findings. The lack of theory-driven, systematic approaches and (occasionally serious) methodological shortcomings complicates this debate even more. This review suggests two general mechanisms mediating transfer effects that are (or are not) observed after working memory training: enhanced working memory capacity, enabling people to hold more items in working memory than before training, or enhanced efficiency using the working memory capacity available (e.g., using chunking strategies to remember more items correctly). We then highlight multiple factors that could influence these mechanisms of transfer and thus the success of training interventions. These factors include (1) the nature of the training regime (i.e., intensity, duration, and adaptivity of the training tasks) and, with it, the magnitude of improvements during training, and (2) individual differences in age, cognitive abilities, biological factors, and motivational and personality factors. Finally, we summarize the findings revealed by existing training studies for each of these factors, and thereby present a roadmap for accumulating further empirical evidence regarding the efficacy of working memory training in a systematic way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Alloway, T. P. (2009). Working memory, but not IQ, predicts subsequent learning in children with learning difficulties. European Journal of Psychological Assessment, 25(2), 92–98. doi:10.1027/1015-5759.25.2.92.

    Google Scholar 

  • Alloway, T. P., Bibile, V., & Lau, G. (2013). Computerized working memory training: Can it lead to gains in cognitive skills in students? Computers in Human Behavior, 29, 632–638. doi:10.1016/j.chb.2012.10.023.

    Google Scholar 

  • Ando, J., Ono, Y., & Wright, M. J. (2001). Genetic structure of spatial and verbal working memory. Behavior Genetics, 31(6), 615–624. doi:10.1023/A:1013353613591.

    PubMed  Google Scholar 

  • Anguera, J. A., Bernard, J. A., Jaeggi, S. M., Buschkuehl, M., Benson, B. L., Jennett, S., et al. (2012). The effects of working memory resource depletion and training on sensorimotor adaptation. Behavioural Brain Research, 228, 107–115. doi:10.1016/j.bbr.2011.11.040.

    PubMed  PubMed Central  Google Scholar 

  • Bäckman, L., & Nyberg, L. (2013). Dopamine and training-related working-memory improvement. Neuroscience and Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2013.01.014 (in press).

  • Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., & Bradley, R. H. (2005). Those who have receive: The Matthew effect in early childhood intervention in the home environment. Review of Educational Research, 75(1), 1–26.

    Google Scholar 

  • Barrouillet, P., Bernardin, S., & Camos, V. (2004). Time constraints and resource sharing in adults working memory. Journal of Experimental Psychology: General, 133(1), 83–100.

    Google Scholar 

  • Bellander, M., Brehmer, Y., Westerberg, H., Karlsson, S., Fürth, D., Bergman, O., et al. (2011). Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement. Neuropsychologia, 49, 1938–1942. doi:10.1016/j.neuropsychologia.2011.03.021.

    PubMed  Google Scholar 

  • Bergman, O., Håkansson, A., Westberg, L., Belin, A. C., Sydow, O., Olson, L., Holmberg, B., Fratiglioni, L., Bäckman, L., Eriksson, E., & Nissbrandt, H. (2009). Do polymorphisms in transcription factors LMX1A and LMX1B influence the risk for Parkinson’s disease? Journal of Neural Transmission, 116(3), 333–338. doi:10.1007/s00702-009-0187-z.

    Google Scholar 

  • Blokland, G. A. M., McMahon, K. L., Thompson, P. M., Martin, N. G., de Zubicaray, G. I., & Wright, M. J. (2011). Heritability of working memory brain activation. The Journal of Neuroscience, 31(30), 10882–10890. doi:10.1523/JNEUROSCI.5334-10.2011.

    PubMed  PubMed Central  Google Scholar 

  • Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25(4), 767–778. doi:10.1037/a0020683.

    PubMed  Google Scholar 

  • Brehmer, Y., Westerberg, H., & Bäckman, L. (2012). Working-memory training in younger and older adults: Training gains, transfer, and maintenance. Frontiers in Human Neuroscience, 6(63), 1–7. doi:10.3389/fnhum.2012.00063.

    Google Scholar 

  • Brehmer, Y., Westerberg, H., Bellander, M., Fürth, D., Karlsson, S., & Bäckman, L. (2009). Working memory plasticity modulated by dopamine transporter genotype. Neuroscience Letters, 467, 117–120. doi:10.1016/j.neulet.2009.10.018.

    PubMed  Google Scholar 

  • Brose, A., Schmiedek, F., Lövden, M., Molenaar, P. C. M., & Lindenberger, U. (2010). Adult age differences in covariation of motivation and working memory performance: Contrasting between-person and within-person findings. Research in Human Development, 7(1), 61–78.

    Google Scholar 

  • Bueller, J., Aftab, M., Sen, S., Gomez-Hassan, D., Burmeister, M., & Zubieta, J.-K. (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry, 59, 812–815. doi:10.1016/j.biopsych.2005.09.022.

    PubMed  Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. doi:10.1037/0033-295X.97.4.523.

    PubMed  Google Scholar 

  • Buschkuehl, M., & Jaeggi, S. M. (2010). Improving intelligence: A literature review. Swiss Medical Weekly, 140(19–20), 266–272.

    PubMed  Google Scholar 

  • Carretti, B., Borella, E., & De Beni, R. (2007). Does strategic memory training improve the working memory performance of younger and older adults? Experimental Psychology, 54(4), 311–320. doi:10.1027/1618-3169.54.4.311.

    PubMed  Google Scholar 

  • Case, R., Kurland, M., & Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386–404. doi:10.1016/0022-0965(82)90054-6.

    Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2), 193–199. doi:10.3758/PBR.17.2.193.

    Google Scholar 

  • Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542. doi:10.1016/j.intell.2012.07.004.

    Google Scholar 

  • Cogmed. (2013). Commentary: “Is Working Memory Training Effective? A meta-analytic review”. Retrieved 05/10, 2013. http://www.cogmed.com/commentary-working-memory-training-effective-metaanalytic-review.

  • Colzato, L. S., van Muijden, J., Band, G. P. H., & Hommel, B. (2011). Genetic modulation of training and transfer in older adults: BDNF Val66Met polymorphism is associated with wider useful field of view. Frontiers in Psychology, 2(199), 1–6. doi:10.3389/fpsyg.2011.00199.

    Google Scholar 

  • Conway, A. R. A., & Getz, S. J. (2010). Cognitive ability: Does working memory training enhance intelligence? Current Biology, 20(8), R362–R364.

    PubMed  Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 739–786. doi:10.3758/BF03196772.

    Google Scholar 

  • Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552. doi:10.1016/j.tics.2003.10.005.

    PubMed  Google Scholar 

  • Cowan, N. (1995). Attention and memory: An integrated framework. New York: Oxford University Press.

    Google Scholar 

  • Craik, F. I. M., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. TRENDS in Cognitive Sciences, 10(3), 131–138. doi:10.1016/j.tics.2006.01.007.

    PubMed  Google Scholar 

  • Dahlin, E., Nyberg, L., Bäckman, L., & Stigsdotter Neely, A. (2008a). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720–730. doi:10.1037/a0014296.

    PubMed  Google Scholar 

  • Dahlin, E., Stigsdotter Neely, A., Larsson, A., Bäckman, L., & Nyberg, L. (2008b). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512. doi:10.1126/science.1155466.

    PubMed  Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning & Verbal Behavior, 19, 450–466.

    Google Scholar 

  • Deci, E. L., & Ryan, R. M. (2013). Intrinsic Motivation Inventory. Retrieved 06/13, 2013. http://selfdeterminationtheory.org/questionnaires/10-questionnaires/50 (n.d.).

  • Derakshan, N., & Eysenck, M. W. (2009). Anxiety, processing efficiency, and cognitive performance. European Psychologist, 14(2), 168–176. doi:10.1027/1016-9040.14.2.168.

    Google Scholar 

  • Dorbath, L., Hasselhorn, M., & Titz, C. (2011). Aging and executive functioning: A training study on focus-switching. Frontiers in Psychology, 2(257), 1–12. doi:10.3389/fpsyg.2011.00257.

    Google Scholar 

  • Duckworth, A. L., Quinn, P. D., Lynam, D. R., Loeber, R., & Stouthamer-Loeber, M. (2011). Role of test motivation in intelligence testing. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7716–7720. doi:10.1073/pnas.1018601108.

    PubMed  PubMed Central  Google Scholar 

  • Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. TRENDS in Cognitive Sciences, 14(4), 172–179. doi:10.1016/j.tics.2010.01.004.

    PubMed  Google Scholar 

  • Dunlosky, J., & Kane, M. J. (2007). The contributions of strategy use to working memory span: A comparison of strategy assessment methods. The Quarterly Journal of Experimental Psychology, 60(9), 1227–1245. doi:10.1080/17470210600926075.

    PubMed  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269. doi:10.1016/S0092-8674(03)00035-7.

    PubMed  Google Scholar 

  • Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999a). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge: Cambridge University Press.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999b). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309–331. doi:10.1037/0096-3445.128.3.309.

    Google Scholar 

  • Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory: Extraordinary feats of memory can be matched or surpassed by people with average memories that have been improved by training. American Scientist, 70(6), 607–615.

    PubMed  Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245. doi:10.1037/0033-295X.102.2.211.

    PubMed  Google Scholar 

  • Feldman Barrett, L., Tugade, M. M., & Engle, R. W. (2004). Individual difference in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553–573. doi:10.1037/0033-2909.130.4.553.

    Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. doi:10.1016/0022-3956(75)90026-6.

    PubMed  Google Scholar 

  • Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137(2), 201–225. doi:10.1037/0096-3445.137.2.201.

    Google Scholar 

  • Friling, S., Andersson, E., Thompson, L. H., Jönsson, M. E., Hebsgaard, J. B., Nanou, E., et al. (2009). Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7613–7618. doi:10.1073/pnas.0902396106.

    PubMed  PubMed Central  Google Scholar 

  • Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.

    Google Scholar 

  • Gibson, B. S., Gondoli, D. M., Kronenberger, W. G., Johnson, A. C., Steeger, C. M., & Morrisey, R. A. (2013). Exploration of an adaptive training regimen that can target the secondary memory component of working memory capacity. Memory & Cognition, 41(5), 726–737. doi:10.3758/s13421-013-0295-8.

    Google Scholar 

  • Gibson, B. S., Kronenberger, W. G., Gondoli, D. M., Johnson, A. C., Morrisey, R. A., & Steeger, C. M. (2012). Component analysis of simple span vs. complex span adaptive working memory exercises: A randomized, controlled trial. Journal of Applied Research in Memory and Cognition, 1(3), 179–184. doi:10.1016/j.jarmac.2012.06.005.

    PubMed  PubMed Central  Google Scholar 

  • Glenberg, A. M., & Lehmann, T. S. (1980). Spacing repetitions over 1 week. Memory & Cognition, 8(6), 528–538. doi:10.3758/BF03213772.

    Google Scholar 

  • Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables can humans process? Psychological Science, 16(1), 70–76. doi:10.1111/j.0956-7976.2005.00782.x

    Google Scholar 

  • Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23(17), 6690–6694.

    PubMed  Google Scholar 

  • Heinz, A., Goldman, D., Jones, D. W., Palmour, R., Hommer, D., Gorey, J. G., et al. (2000). Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology, 22(2), 133–139. doi:10.1016/S0893-133X(99)00099-8.

    PubMed  Google Scholar 

  • Heinzel, S., Schulte, S., Onken, J., Duong, Q.-L., Riemer, T. G., Heinz, A., Rapp, M. A. (2013). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Aging, Neuropsychology, and Cognition. doi: 10.1080/13825585.2013.790338 (in press).

  • Hidi, S. (2006). Interest—A unique motivational variable. Educational Research Review, 1(2), 69–82. doi:10.1016/j.edurev.2006.09.001.

    Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15. doi:10.1111/j.1467-7687.2009.00848.x.

    PubMed  Google Scholar 

  • Holmes, J., Gathercole, S. E., Place, M., Dunning, D. L., Hilton, K., & Elliott, J. (2010). Working memory deficits can be overcome: Impacts of training and medication on working memory in children with ADHD. Applied Cognitive Psychology, 24(6), 827–836. doi:10.1002/acp.1589.

    Google Scholar 

  • Houben, K., Wiers, R. W., & Jansen, A. (2011). Getting a grip on drinking behavior: Training working memory to reduce alcohol abuse. Psychological Science, 22(7), 968–975. doi:10.1177/0956797611412392.

    PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W., J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. doi: 10.1073/pnas.0801268105.

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi:10.1016/j.intell.2010.09.001.

    Google Scholar 

  • Jausovec, N., & Jausovec, K. (2012). Working memory training: Improving intelligence—changing brain activity. Brain and Cognition, 79, 96–106. doi:10.1016/j.bandc.2012.02.007.

    PubMed  Google Scholar 

  • Karbach, J. (2008). Potential and Limits of Executive Control Training. Age Differences in the Near and Far Transfer of Task-Switching Training. Universität des Saarlandes, Saarland, Germany. Retrieved from http://scidok.sulb.uni-saarland.de/volltexte/2008/1772/.

  • Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. doi:10.1111/j.1467-7687.2009.00846.x.

    PubMed  Google Scholar 

  • Karbach, J., Mang, S., & Kray, J. (2010). Transfer of task-switching training in older age: The role of verbal processes. Psychology and Aging, 25(3), 677–683. doi:10.1037/a0019845.

    PubMed  Google Scholar 

  • Kliegl, R., Smith, J., & Baltes, P. B. (1990). On the locus and process of magnification of age differences during mnemonic training. Developmental Psychology, 26, 894–904. doi:10.1037/0012-1649.26.6.894.

    Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14, 317–324. doi:10.1016/j.tics.2010.05.002.

    PubMed  Google Scholar 

  • Klingberg, T. (2012). Is working memory capacity fixed? Journal of Applied Research in Memory and Cognition, 1(3), 194–196. doi:10.1016/j.jarmac.2012.07.004.

    Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD—A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186. doi:10.1097/00004583-200502000-00010.

    PubMed  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791. doi:10.1076/jcen.24.6.781.8395.

    PubMed  Google Scholar 

  • Kramer, A. F., & Willis, S. L. (2002). Enhancing the cognitive vitality of older adults. Current Directions in Psychological Science, 11(5), 173–177.

    Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability (is little more than) working-memory capacity?! Intelligence, 14, 389–433. doi:10.1016/S0160-2896(05)80012-1.

    Google Scholar 

  • Langer, N., von Bastian, C. C., Wirz, H., Oberauer, K., & Jäncke, L. (2013). The effects of working memory training on functional brain network efficiency. Cortex, 49(9), 2424–2438. doi:10.1016/j.cortex.2013.01.008.

    Google Scholar 

  • Li, S.-C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742. doi:10.1037/a0014343.

    PubMed  Google Scholar 

  • Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J., & Hale, S. (2013). Dual n-back training increases the capacity of the focus of attention. Psychonomic Bulletin & Review, 20, 135–141. doi:10.3758/s13423-012-0335-6.

    Google Scholar 

  • Lövden, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. doi:10.1037/a0020080.

    PubMed  Google Scholar 

  • Lövden, M., Brehmer, Y., Li, S.-C., & Lindenberger, U. (2012). Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in Human Neuroscience, 6(141). doi:10.3389/fnhum.2012.00141.

  • Lu, B., & Gottschalk, W. (2000). Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Progress in Brain Research, 128, 231–241. doi:10.1016/S0079-6123(00)28020-5.

  • Lundqvist, A., Grundström, K., Samuelsson, K., & Rönnberg, J. (2010). Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Injury, 24(10), 1173–1183. doi:10.3109/02699052.2010.498007.

    PubMed  Google Scholar 

  • Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19, 504–522. doi:10.1007/s11065-009-9119-9.

    PubMed  PubMed Central  Google Scholar 

  • Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairment in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 44(4), 377–384. doi:10.1097/01.chi.0000153228.72591.73.

    PubMed  Google Scholar 

  • McArdle, J. J., & Prindle, J. J. (2008). A latent change score analysis of a randomized clinical trial in reasoning training. Psychology and Aging, 23(4), 702–719. doi:10.1037/a0014349.

    PubMed  Google Scholar 

  • McCarney, R., Warner, J., Iliffe, S., van Haselen, R., Griffin, M., & Fisher, P. (2007). The Hawthorne effect: A randomised, controlled trial. BMC Medical Research Methodology, 7(30), 1–8. doi:10.1186/1471-2288-7-30.

    Google Scholar 

  • McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323, 800–802. doi:10.1126/science.1166102.

    PubMed  Google Scholar 

  • McNamara, D. S., & Scott, J. L. (2001). Working memory capacity and strategy use. Memory & Cognition, 29(1), 10–17.

    Google Scholar 

  • Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.

    PubMed  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18, 46–60. doi:10.3758/s13423-010-0034-0.

    Google Scholar 

  • Mumford, M. D., Constanza, D. P., Baughman, W. A., Threlfall, K. V., & Fleishman, E. A. (1994). Influence of abilities on performance during practice: Effects of massed and distributed practice. Journal of Educational Psychology, 86(1), 134–144. doi:10.1037/0022-0663.86.1.134.

    Google Scholar 

  • Nakatani, T., Kumai, M., Mizuhara, E., Minaki, Y., & Ono, Y. (2010). Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Developmental Biology, 339(1), 101–113. doi:10.1016/j.ydbio.2009.12.017.

    PubMed  Google Scholar 

  • Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411–421. doi:10.1037//0278-7393.28.3.411.

    PubMed  Google Scholar 

  • Oberauer, K. (2006). Is the focus of attention in working memory expanded through practice? Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(2), 197–214. doi:10.1037/0278-7393.32.2.197.

    PubMed  Google Scholar 

  • Oberauer, K. (2009). Design for a working memory. In B. Ross (Ed.), The psychology of learning and motivation: advances in research and theory (Vol. 51). New York: Academic Press.

    Google Scholar 

  • Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19, 779–819. doi:10.3758/s13423-012-0272-4.

    Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway, C. Jarrold, J. M. Kane, A. Miyake, & J. N. Towse (Eds.), Variation in working memory (pp. 49–75). New York: Oxford University Press.

    Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167–193.

    Google Scholar 

  • Oberauer, K., Süß, H.-M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36, 641–652. doi:10.1016/j.intell.2008.01.007.

    Google Scholar 

  • Oken, B. S., Flegal, K., Zajdel, D., Kishiyama, S., Haas, M., & Peters, D. (2008). Expectancy effect: Impact of pill administration on cognitive performance in healthy seniors. Journal of Clinical and Experimental Neuropsychology, 30(1), 7–17. doi:10.1080/13803390701775428.

    PubMed  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. doi:10.1038/nn1165.

    PubMed  Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465, 775–779. doi:10.1038/nature09042.

    PubMed  PubMed Central  Google Scholar 

  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320. doi:10.1037//0882-7974.17.2.299.

    PubMed  Google Scholar 

  • Penner, I.-K., Vogt, A., Stöcklin, M., Gschwind, L., Opwis, K., & Calabrese, P. (2012). Computerised working memory training in healthy adults: A comparison of two different training schedules. Neuropsychological Rehabilitation, 22(5), 716–733. doi:10.1080/09602011.2012.686883.

    PubMed  Google Scholar 

  • Raven, J. C. (1990). Advanced progressive matrices: sets I, II. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. doi:10.1037/a0029082.

    Google Scholar 

  • Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813–822. doi:10.1037/a0023631.

    PubMed  Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. doi:http://www.ncbi.nlm.nih.gov/pubmed/11392867.

    PubMed  Google Scholar 

  • Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience, 6(166). doi:10.3389/fnhum.2012.00166.

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207–217.

    Google Scholar 

  • Schmiedek, F., Lövden, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2(27), 1–10. doi:10.3389/fnagi.2010.00027.

    Google Scholar 

  • Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136(3), 414–429. doi:10.1037/0096-3445.136.3.414.

    Google Scholar 

  • Schweizer, S., Hampshire, A., & Dalgleish, T. (2011). Extending brain-training to the affective domain: Increasing cognitive and affective executive control through emotional working memory training. PLoS ONE, 6(9), e24372. doi:10.1371/journal.pone.0024372.

    PubMed  PubMed Central  Google Scholar 

  • Shaywitz, B. A., Holford, T. R., Holahan, J. M., Fletcher, J. M., Stuebing, K. K., Francis, D. J., et al. (1995). A Matthew effect for IQ but not for reading: Results from a longitudinal study. Reading Research Quarterly, 30(4), 894–906.

    Google Scholar 

  • Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012a). Cogmed working memory training: Does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 1(3), 185–193. doi:10.1016/j.jarmac.2012.06.003.

    Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3–4), 245–276.

    Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012b). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. doi:10.1037/a0027473.

    PubMed  Google Scholar 

  • Shiran, A., & Breznitz, Z. (2011). The effect of cognitive training on recall range and speed of information processing in the working memory of dyslexic and skilled readers. Journal of Neurolinguistics, 24, 524–537. doi:10.1016/j.jneuroling.2010.12.001.

    Google Scholar 

  • Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 26, 7–29.

    Google Scholar 

  • Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41, 341–357. doi:10.1016/j.intell.2013.05.006.

    Google Scholar 

  • Studer-Luethi, B., Jaeggi, S. M., Buschkuehl, M., & Perrig, W. J. (2012). Influence of neuroticism and conscientiousness on working memory training outcome. Personality and Individual Differences, 53(1), 44–49. doi:10.1016/j.paid.2012.02.012.

  • Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability—And a little bit more. Intelligence, 30, 261–288.

    Google Scholar 

  • Swanson, J. M., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., et al. (2000). Dopamine genes and ADHD. Neuroscience and Biobehavioral Reviews, 24(1), 21–25. doi:10.1016/S0149-7634(99)00062-7.

    PubMed  Google Scholar 

  • Thompson, T. W., Waskom, M. L., Garel, K.-L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., et al. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8(5), e63614. doi:10.1371/journal.pone.0063614.

    PubMed  PubMed Central  Google Scholar 

  • Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. The Journal of Neuroscience, 33(19), 8257–8263. doi:10.1523/JNEUROSCI.5348-12.2013.

    PubMed  PubMed Central  Google Scholar 

  • Turley-Ames, K. J., & Whitfield, M. M. (2003). Strategy training and working memory task performance. Journal of Memory and Language, 49, 446–468.

    Google Scholar 

  • Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038–1066. doi:10.1037/0033-2909.133.6.1038.

    PubMed  Google Scholar 

  • VanNess, S. H., Owens, M. J., & Kilts, C. D. (2005). The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genetics, 6, 55. doi:10.1186/1471-2156-6-55.

    PubMed  PubMed Central  Google Scholar 

  • Verhaeghen, P., Cerella, J., & Basak, C. (2004). A working memory workout: How to expand the focus of serial attention from one to four items in 10 hours or less. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30, 1322–1337. doi:10.1037/0278-7393.30.6.1322.

    PubMed  Google Scholar 

  • Verhaeghen, P., & Marcoen, A. (1996). On the mechanisms of plasticity in young and older adults after instruction in the method of loci: Evidence for an amplification model. Psychology and Aging, 11(1), 164–178. doi:10.1037/0882-7974.11.1.164.

    PubMed  Google Scholar 

  • von Bastian, C. C., & Eschen, A. (2013). Impact of training procedures on working memory training and transfer effects (Manuscript in preparation).

  • von Bastian, C. C., Langer, N., Jäncke, L., & Oberauer, K. (2013a). Effects of working memory training in young and old adults. Memory & Cognition, 41(4), 611–624. doi:10.3758/s13421-012-0280-7.

    Google Scholar 

  • von Bastian, C. C., Locher, A., & Ruflin, M. (2013). Tatool: a Java-based open-source programming framework for psychological studies. Behavior Research Methods, 45(1), 108–115. doi:10.3758/s13428-012-0224-y.

    Google Scholar 

  • von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi:10.1016/j.jml.2013.02.002.

    Google Scholar 

  • Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory—Is younger, better? Developmental Review, 32, 360–387. doi:10.1016/j.dr.2012.07.001.

    Google Scholar 

  • Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M.-L., Bartfai, A., et al. (2007). Computerized working memory training after stroke—A pilot study. Brain Injury, 21(1), 21–29. doi:10.1080/02699050601148726.

    PubMed  Google Scholar 

  • Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142, 108–118. doi:10.1016/j.actpsy.2012.11.003.

    PubMed  Google Scholar 

  • Wright, M. J., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., et al. (2001). Genetics of cognition: Outline of a collaborative twin study. Twin Research, 4(1), 48–56. doi:10.1375/1369052012146.

    PubMed  Google Scholar 

  • Yesavage, J. A., & Jacob, R. (1984). Effects of relaxation and mnemonics on memory, attention and anxiety in the elderly. Experimental Aging Research, 10(4), 211–214. doi:10.1080/03610738408258467.

    PubMed  Google Scholar 

  • Yesavage, J. A., Sheikh, J. I., Friedman, L., & Tanke, E. (1990). Learning mnemonics: Roles of aging and subtle cognitive impairment. Psychology and Aging, 5(1), 133–137. doi:10.1037/0882-7974.5.1.133.

    PubMed  Google Scholar 

  • Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2013). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology. doi:10.1037/a0032982 (in press).

Download references

Acknowledgments

Preparation of this article was supported by a grant from the Suzanne and Hans Biäsch Foundation for Applied Psychology to C. C. von Bastian and a grant from the Swiss National Science Foundation to K. Oberauer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia C. von Bastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Bastian, C.C., Oberauer, K. Effects and mechanisms of working memory training: a review. Psychological Research 78, 803–820 (2014). https://doi.org/10.1007/s00426-013-0524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-013-0524-6

Keywords

Navigation