Cognitive control and the COMT Val158Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency

Abstract

The study investigated whether successful transfer of game-based cognitive improvements to untrained tasks might be modulated by preexisting neuro-developmental factors, such as genetic variability related to the catechol-O-methyltransferase (COMT)—an enzyme responsible for the degradation of dopamine. The COMT Val158Met genotype may differentially affect cognitive stability and flexibility, and we hypothesized that Val/Val homozygous individuals (who possess low prefrontal dopamine levels) show more pronounced cognitive flexibility than Met/-carriers (who possess high prefrontal dopamine levels). We trained participants, genotyped for the COMT Val158Met polymorphism on playing “Half-Life 2”, a first-person shooter game which has been shown to improve cognitive flexibility. Pre-training (baseline) and post-training measures of cognitive flexibility were acquired by means of a task-switching paradigm. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects and that playing first-person shooter games promotes cognitive flexibility in individuals with a suitable genetic predisposition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bilder, R., Volavka, K., Lachman, H., & Grace, A. (2004). The Catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29, 1943–1961.

    PubMed  Article  Google Scholar 

  2. Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Front Psychology, 2, 226. doi:10.3389/fpsyg.2011.00226.

    Article  Google Scholar 

  3. Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398.

    PubMed  Article  Google Scholar 

  4. Brehmer, Y., Westerberg, H., Bellander, M., Fürth, D., Karlsson, S., & Bäckman, L. (2009). Working memory plasticity modulated by dopamine transporter genotype. Neuroscience Letters, 467(2), 117–120.

    PubMed  Article  Google Scholar 

  5. Castel, A. D., Pratt, J., & Drummond, E. (2005). The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychologica, 119, 217–230.

    PubMed  Article  Google Scholar 

  6. Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal Human Genetics, 75, 807–821.

    Article  Google Scholar 

  7. Clark, K., Fleck, M. S., & MitroV, S. R. (2011). Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychologica, 136, 67–72.

    PubMed  Article  Google Scholar 

  8. Colzato, L. S., van den Wildenberg, W., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77(2), 234–239.

    PubMed  Article  Google Scholar 

  9. Colzato, L. S., van Leeuwen, P. J. A., van den Wildenberg, W. P. M., & Hommel, B. (2010a). DOOM’d to switch: superior cognitive flexibility in players of first person shooter games. Frontiers in Psychology, 1, 8. doi:10.3389/fpsyg.2010.00008.

    PubMed Central  PubMed  Google Scholar 

  10. Colzato, L. S., van Wouwe, N. C., Lavender, T., & Hommel, B. (2006). Intelligence and cognitive flexibility: fluid intelligence correlates with feature “unbinding” across perception and action. Psychonomic Bulletin and Review, 13, 1043–1048.

    PubMed  Article  Google Scholar 

  11. Colzato, L. S., Waszak, F., Nieuwenhuis, S., Posthuma, D., & Hommel, B. (2010b). The flexible mind is associated with the Catechol-O-methyltransferase (COMT) Val158Met polymorphism: evidence for a role of dopamine in the control of task switching. Neuropsychologia, 48, 2764–2768.

    PubMed  Article  Google Scholar 

  12. Cools, R. (2006). Dopaminergic modulation of cognitive function: implication for L-DOPA therapy in Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 30, 1–34.

    PubMed  Article  Google Scholar 

  13. Cools, R., & D’Esposito, M. (2010). Dopaminergic modulation of flexible cognitive control in humans. In A. Björklund, S. Dunnett, L. Iversen, & S. Iversen (Eds.), Dopamine handbook (pp. 249–260). Oxford: Oxford University Press.

    Google Scholar 

  14. Crofts, H. S., Dalley, J. W., Van Denderen, J. C. M., Everitt, B. J., Robbins, T. W., & Roberts, A. C. (2001). Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cerebral Cortex, 11, 1015–1026.

    PubMed  Article  Google Scholar 

  15. DNA Genotek Inc. (2006). Oragene™ product brochure. Ottawa: DNA Genotek Inc.

    Google Scholar 

  16. Ettinger, U., Kumari, V., Collier, D. A., Powell, J., Luzi, S., Michel, T. M., Zedomi, O., & Williams, S. C. R. (2008). Catechol-O-Methyltransferase (COMT) Val158Met genotype is associated with BOLD response as a function of task characteristic. Neuropsychopharmacology, 33, 3046–3057.

    Google Scholar 

  17. Goschke, T. (2000). Involuntary persistence and intentional reconfiguration in task-set switching. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: control of cognitive processes (pp. 331–355). Cambridge: MIT Press.

    Google Scholar 

  18. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423, 534–537.

    PubMed  Article  Google Scholar 

  19. Green, C. S., & Bavelier, D. (2006a). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101, 217–245.

    PubMed Central  PubMed  Article  Google Scholar 

  20. Green, C. S., & Bavelier, D. (2006b). Effect of action video games on the spatial distribution of visuospatial attention. Journal of Experimental Psychology Human Perception and Performance, 32, 1465–1468.

    PubMed Central  PubMed  Article  Google Scholar 

  21. Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of attention. Psychological Science, 18, 88–94.

    PubMed Central  PubMed  Article  Google Scholar 

  22. Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video games on task switching. Computers in Human Behavior, 12, 984–994.

    Article  Google Scholar 

  23. Karle, J. W., Watter, S., & Shedden, J. M. (2010). Task switching in video game players: benefits of selective attention but not resistance to proactive interference. Acta Psychologica, 134(1), 70–78.

    PubMed  Article  Google Scholar 

  24. Kray, J., Li, K. Z. H., & Lindenberger, U. (2002). Age-related changes in task-switching components: the role of task uncertainty. Brain and Cognition, 49, 363–381.

    PubMed  Article  Google Scholar 

  25. Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243–250.

    PubMed  Article  Google Scholar 

  26. Marenco, S., & Radulescu, E. (2010). Imaging genetics of structural brain connectivity and neural integrity markers. Neuroimage, 53, 848–856.

    PubMed Central  PubMed  Article  Google Scholar 

  27. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49–100.

    PubMed  Article  Google Scholar 

  28. Monsell, S. (2003). Task switching. Trends in Cognitive Science, 7, 134–140.

    Article  Google Scholar 

  29. Nolan, K., Bilder, R., Lachman, H., & Volavka, K. (2004). Catechol-O-methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. American Journal Psychiatry, 161, 359–361.

    Article  Google Scholar 

  30. Navon, D. (1977). Forest before trees: the precedence of global features in visual perception. Cognitive Psychology, 9, 353–383.

    Google Scholar 

  31. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465, 775–778.

    PubMed Central  PubMed  Article  Google Scholar 

  32. Raven, J. C., Court, J. H., & Raven, J. (1988). Manual for Raven’s progressive matrices and vocabulary scales. London: Lewis.

    Google Scholar 

  33. Roberts, A. C., De Salvia, M. A., Wilkinson, L. S., Collins, P., Muir, J. L., Everitt, B. J., et al. (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the wisconsin card sort test: possible interactions with subcortical dopamine. Journal of Neuroscience, 14, 2531–2544.

    PubMed  Google Scholar 

  34. Schott, B. H., Seidenbecher, C. I., Fenker, D. B., Lauer, C. J., Bunzeck, N., & Bernstein, H.-G. (2006). The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. Journal of Neuroscience, 26, 1407–1417.

    PubMed  Article  Google Scholar 

  35. Strobach, T., Frensch, P. A., & Schubert, T. (2012). Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychologica, 140(1), 13–24.

    PubMed  Article  Google Scholar 

  36. Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., et al. (2010). Training of working memory impacts structural connectivity. Journal of Neuroscience, 30, 3297–3303.

    PubMed  Article  Google Scholar 

  37. van Colzato, L. S., Muiden, J., Band, G., & Hommel, B. (2011). Genetic modulation of training and transfer in older adults: BDNF Val66Met polymorphism is associated with wider useful field of view. Frontiers in Cognition. doi:10.3389/fpsyg.2011.00199.

    Google Scholar 

Download references

Acknowledgments

We thank our Bachelor and Master students for their enthusiasm and invaluable assistance in recruiting, testing the participants of this study and collecting the data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lorenza S. Colzato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colzato, L.S., van den Wildenberg, W.P.M. & Hommel, B. Cognitive control and the COMT Val158Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency. Psychological Research 78, 670–678 (2014). https://doi.org/10.1007/s00426-013-0514-8

Download citation

Keywords

  • Switch Cost
  • Cognitive Flexibility
  • Homozygous Individual
  • Videogame Experience
  • COMT Polymorphism