Advertisement

Psychological Research

, Volume 78, Issue 1, pp 37–54 | Cite as

Rapid processing of closure and viewpoint-invariant symmetry: behavioral criteria for feedforward processing

  • Filipp SchmidtEmail author
  • Thomas Schmidt
Original Article

Abstract

To pin down the processing characteristics of symmetry and closure in contour processing, we investigated their ability to activate rapid motor responses in a primed flanker task. In three experiments, participants selected as quickly and accurately as possible the one of two target contours possessing symmetry or closure. Target pairs were preceded by prime pairs whose spatial arrangement was consistent or inconsistent with respect to the required response. We tested for the efficiency and automaticity of symmetry and closure processing. For both cues, priming effects were present in full magnitude in the fastest motor responses consistent with a simple feedforward model. Priming effects from symmetry cues were independent of skewing and the orientation of their symmetry axis but sometimes failed to increase with increasing prime-target interval. We conclude that closure and (possibly) viewpoint-independent symmetry cues are extracted rapidly during the first feedforward wave of neuronal processing.

Keywords

Priming Effect Illusory Contour Lateralized Readiness Potential Response Time Distribution Closure Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Shanley Allen, Neiloufar Family, Kalliopi Katsika, Mark Calley, Andreas Weber, Alina Kholodova, and Anke Haberkamp for comments on an early version of the manuscript and Michael Herzog, Rob van Lier, Johan Wagemans, and Rufin VanRullen for helpful suggestions. This research was supported by Schm1671/1-5 of the German Research Foundation to T.S.

References

  1. Bahnsen, P. (1928). Eine Untersuchung über Symmetrie und Asymmetrie bei visuellen Wahrnehmungen. Zeitschrift für Psychologie, 108, 129–154.Google Scholar
  2. Barlow, H. B., & Reeves, B. C. (1979). The versatility and absolute efficiency of detecting mirror symmetry in random dot displays. Vision Research, 19, 783–793. doi: 10.1016/0042-6989(79)90154-8.PubMedCrossRefGoogle Scholar
  3. Bauer, R., & Heinze, S. (2002). Contour integration in striate cortex. Classic cell responses or cooperative selection? Experimental Brain Research, 147, 145–152. doi: 10.1007/s00221-002-1178-6.PubMedCrossRefGoogle Scholar
  4. Baylis, C. G., & Driver, J. (1994). Parallel computation of symmetry but not repetition within visual shapes. Visual Cognition, 1, 377–400. doi: 10.1080/13506289408401715.CrossRefGoogle Scholar
  5. Bertamini, M. (2010). Sensitivity to reflection and translation is modulated by objectness. Perception, 39, 27–40. doi: 10.1068/p6393.PubMedCrossRefGoogle Scholar
  6. Bullier, J. (2001). Integrated model of visual processing. Brain Research Reviews, 36, 96–107. doi: 10.1016/S0165-0173(01)00085-6.PubMedCrossRefGoogle Scholar
  7. Carmody, D. P., Nodine, C. F., & Locher, P. J. (1977). Global detection of symmetry. Perceptual and Motor Skills, 45, 1267–1273. doi: 10.2466/pms.1977.45.3f.1267.PubMedCrossRefGoogle Scholar
  8. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45.Google Scholar
  9. Dakin, S. C., & Herbert, A. M. (1998). The spatial region of integration for visual symmetry detection. Proceedings of the Royal Society B: Biological Sciences, 265, 659–664.PubMedCrossRefGoogle Scholar
  10. Driver, J., Baylis, G. C., & Rafa, R. D. (1992). Preserved figure-ground segregation and symmetry perception in visual neglect. Nature, 360, 73–75. doi: 10.1038/360073a0.PubMedCrossRefGoogle Scholar
  11. Eimer, M., & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24, 1737–1747.PubMedGoogle Scholar
  12. Elder, J. H., & Zucker, S. W. (1993). The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vision Research, 33, 981–991. doi: 10.1016/0042-6989(93)90080-G.PubMedCrossRefGoogle Scholar
  13. Elder, J. H., & Zucker, S. W. (1998). Evidence for boundary-specific grouping. Vision Research, 38, 143–152. doi: 10.1016/S0042-6989(97)00138-7.PubMedCrossRefGoogle Scholar
  14. Enns, J. (1986). Seeing textons in context. Perception & Psychophysics, 39, 143–147. doi: 10.3758/BF03211496.CrossRefGoogle Scholar
  15. Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169–172. doi: 10.1038/372169a0.PubMedCrossRefGoogle Scholar
  16. Fisher, C. B., & Bornstein, M. H. (1982). Identification of symmetry: effects of stimulus orientation and head position. Perception & Psychophysics, 32, 443–448.Google Scholar
  17. Friedenberg, J., & Bertamini, M. (2000). Contour symmetry detection: the influence of axis orientation and number of objects. Acta Psychologica, 105, 107–118. doi: 10.1016/S0001-6918(00)00051-2.PubMedCrossRefGoogle Scholar
  18. Garrigan, P., Fortunato, L., & LaSala, A. (2010). The effects of closure on contour shape learning. Journal of Vision, 10, 1167. doi: 10.1167/10.7.1167.CrossRefGoogle Scholar
  19. Höfel, L., & Jacobsen, T. (2007). Electrophysiological indices of processing aesthetics: Spontaneous or intentional processes? International Journal of Psychophysiology, 65, 20–31. doi: 10.1016/j.ijpsycho.2007.02.007.PubMedCrossRefGoogle Scholar
  20. Houtkamp, R., & Roelfsema, P. R. (2010). Parallel and serial grouping of image elements in visual perception. Journal of Experimental Psychology: Human Perception and Performance, 36, 1443–1459. doi: 10.1037/a0020248.PubMedGoogle Scholar
  21. Jacobsen, T., & Höfel, L. (2003). Descriptive and evaluative judgment processes: Behavioral and electrophysiological indices of processing symmetry and aesthetics. Cognitive, Affective, & Behavioral Neuroscience, 3, 289–299. doi: 10.3758/CABN.3.4.289.CrossRefGoogle Scholar
  22. Jenkins, B. (1983). Component processes in the perception of bilaterally symmetric dot textures. Perception & Psychophysics, 34, 433–440. doi: 10.3758/BF03203058.CrossRefGoogle Scholar
  23. Julesz, B. (2006). Foundations of cyclopean perception. Cambridge: MIT Press. (Original published in 1971).Google Scholar
  24. Kanbe, F. (2008). Role of endpoints and closure in feature search. Japanese Psychological Research, 50, 145–151. doi: 10.1111./j.1468-5884.2008.00371.x.CrossRefGoogle Scholar
  25. Kiesel, A., Kunde, W., & Hoffmann, J. (2007). Mechanisms of subliminal response priming. Advances in Cognitive Psychology, 3, 307–315. doi: 10.2478/v10053-008-0032-1.PubMedCentralCrossRefGoogle Scholar
  26. Klotz, W., Heumann, M., Ansorge, U., & Neumann, O. (2007). Electrophysiological activation by masked primes: Independence of prime-related and target-related activities. Advances in Cognitive Psychology, 3, 449–465.PubMedCentralCrossRefGoogle Scholar
  27. Koffka, K. (1935). Principles of Gestalt psychology. London: Routledge & Kegan Paul.Google Scholar
  28. Koning, A., & Van Lier, R. (2006). No symmetry advantage when object matching involves accidental viewpoints. Psychological Research, 70, 52–58. doi: 10.1007/s00426-004-0191-8.PubMedCrossRefGoogle Scholar
  29. Koning, A., & Wagemans, J. (2009). Detection of symmetry and repetition in one and two objects: Structures versus strategies. Experimental Psychology, 56, 5–17. doi: 10.1027/1618-3169.56.1.5.PubMedCrossRefGoogle Scholar
  30. Kovács, I., & Julesz, B. (1993). A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proceedings of the National Academy of Sciences of the United States of America, 90, 7495–7497.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lachmann, T., & van Leeuwen, C. (2008). Goodness is central: Task-invariance of perceptual organization in a dual-task setting. Japanese Psychological Research, 50, 193–203.Google Scholar
  32. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. doi: 10.1016/S0166-2236(00)01657-X.PubMedCrossRefGoogle Scholar
  33. Leuthold, H., & Kopp, B. (1998). Mechanisms of priming by masked stimuli: Inferences from event-related brain potentials. Psychological Science, 9, 263–269.CrossRefGoogle Scholar
  34. Locher, P. J., & Wagemans, J. (1993). The effects of element type and spatial grouping on symmetry detection. Perception, 22, 565–587. doi: 10.1068/p220565.PubMedCrossRefGoogle Scholar
  35. Machilsen, B., Pauwels, M., & Wagemans, J. (2009). The role of vertical mirror symmetry in visual shape detection. Journal of Vision, 9(12), 11, 1–11. doi: 10.1167/9.12.11.
  36. Marino, A. C., & Scholl, B. J. (2005). The role of closure in defining the “objects” of object-based attention. Perception & Psychophysics, 67, 1140–1149. doi: 10.3758/BF03193547.CrossRefGoogle Scholar
  37. Mathes, B., & Fahle, M. (2007). Closure facilitates contour integration. Vision Research, 47, 818–827. doi: 10.1016/j.visres.2006.11.014.PubMedCrossRefGoogle Scholar
  38. Mori, S. (1997). Effects of absolute and relative gap sizes in visual search for closure. Canadian Journal of Experimental Psychology, 51, 112–124. doi: 10.1037/1196-1961.51.2.112.PubMedCrossRefGoogle Scholar
  39. Niimi, R., Watanabe, K., & Yokosawa, K. (2005). The role of visible persistence for perception of visual bilateral symmetry. Japanese Psychological Research, 47, 262–270. doi: 10.1111/j.1468-5884.2005.00295.x.CrossRefGoogle Scholar
  40. Niimi, R., & Yokosawa, K. (2008). Determining the orientation of depth-rotated familiar objects. Psychonomic Bulletin & Review, 15, 208–214. doi: 10.3758/PBR.15.1.208.CrossRefGoogle Scholar
  41. Norcia, A. M., Candy, T. R., Pettet, M. W., Vildavski, V. Y., & Tyler, C. W. (2002). Temporal dynamics of the human response to symmetry. Journal of Vision, 2, 132–139. doi: 10.1167/2.2.1.PubMedCrossRefGoogle Scholar
  42. Oka, S., Victor, J. D., Conte, M. M., & Yanagida, T. (2007). VEPs elicited by local correlations and global symmetry: characteristics and interactions. Vision Research, 47, 2212–2222. doi: 10.1016/j.visres.2007.03.020.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Palmer, S. E., & Ghose, T. (2008). Extremal edges: A powerful cue to depth perception and figure-ground organization. Psychological Science, 19, 77–84.PubMedCrossRefGoogle Scholar
  44. Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetries. Journal of Experimental Psychology: Human Perception and Performance, 4, 691–702. doi: 10.1037/0096-1523.4.4.691.PubMedGoogle Scholar
  45. Pashler, H. (1990). Coordinate frame for symmetry detection and object recognition. Journal of Experimental Psychology: Human Perception and Performance, 16, 150–163. doi: 10.1037/0096-1523.16.1.150.PubMedGoogle Scholar
  46. Rainville, S. J. M., & Kingdom, F. A. A. (2000). The functional role of oriented spatial filters in the perception of mirror symmetry–psychophysics and modeling. Vision Research, 40, 2621–2644. doi: 10.1016/S0042-6989(00)00110-3.PubMedCrossRefGoogle Scholar
  47. Rock, I., & Leaman, R. (1963). An experimental analysis of visual symmetry. Acta Psychologica, 21, 171–183. doi: 10.1016/0001-6918(63)90047-7.CrossRefGoogle Scholar
  48. Roelfsema, P. R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203–227.PubMedCrossRefGoogle Scholar
  49. Roland, P. E. (2010). Six principles of visual cortical dynamics. Frontiers in Systems Neuroscience, 4, 28. doi: 10.3389/fnsys.2010.00028.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Saarinen, J., & Levi, D. M. (1999). The effect of contour closure on shape perception. Spatial Vision, 2, 227–238. doi: 10.1163/156856899X00139.CrossRefGoogle Scholar
  51. Sasaki, Y., Vanduffel, W., Knutsen, T., Tyler, C., & Tootell, R. (2005). Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proceedings of the National Academy of Sciences (USA), 102, 3159–3163. doi: 10.1073/pnas.0500319102.CrossRefGoogle Scholar
  52. Sawada, T., & Pizlo, Z. (2008). Detection of skewed symmetry. Journal of Vision, 8(5), 14, 1–18. doi: 10.1167/8.5.14.
  53. Schmidt, F., Haberkamp, A., & Schmidt, T. (2011a). Dos and don’ts in response priming. Advances in Cognitive Psychology, 7, 120–131. doi: 10.2478/v10053-008-0092-2.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Schmidt, T., Haberkamp, A., Veltkamp, G. M., Weber, A., Seydell-Greenwald, A., & Schmidt, F. (2011b). Visual processing in rapid-chase systems: Image processing, attention, and awareness. Frontiers in Psychology, 2, 169. doi: 10.3389/fpsyg.2011.00169.PubMedCentralPubMedGoogle Scholar
  55. Schmidt, T., Niehaus, S., & Nagel, A. (2006). Primes and targets in rapid chases: Tracing sequential waves of motor activation. Behavioural Neuroscience, 120, 1005–1016. doi: 10.1016/j.neuroscience.2006.11.044.CrossRefGoogle Scholar
  56. Schmidt, T., & Schmidt, F. (2009). Processing of natural images is feedforward: A simple behavioral test. Attention, Perception, & Psychophysics, 71, 594–606.CrossRefGoogle Scholar
  57. Schmidt, F., & Schmidt, T. (submitted). Grouping principles in direct competition. Google Scholar
  58. Schumann, F. (1900). Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 23, 1–32.Google Scholar
  59. Seydell-Greenwald, A., & Schmidt, T. (2012). Rapid activation of motor responses by illusory contours. Journal of Experimental Psychology: Human Perception and Performance, 38, 1168–1182.PubMedGoogle Scholar
  60. Tapia, E., Breitmeyer, B. G., & Shooner, C. R. (2010). Role of task-directed attention in nonconscious and conscious response priming by form and color. Journal of Experimental Psychology: Human Perception and Performance, 36, 74–87.PubMedGoogle Scholar
  61. Thorpe, S. J., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522. doi: 10.1038/381520a0.PubMedCrossRefGoogle Scholar
  62. Treder, M. S. (2010). Behind the looking glass: a review on human symmetry perception. Symmetry, 2, 1510–1543. doi: 10.3390/sym2031510.CrossRefGoogle Scholar
  63. Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology: Human Perception and Performance, 10, 12–31. doi: 10.1037/0096-1523.10.1.12.PubMedGoogle Scholar
  64. Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: General, 114, 285–310. doi: 10.1037/0096-3445.114.3.285.CrossRefGoogle Scholar
  65. Tyler, C. W., Baseler, H. A., Kontsevich, L. L., Likova, L. T., Wade, A. R., & Wandell, B. A. (2005). Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage, 24, 306–314. doi: 10.1016/j.neuroimage.2004.09.018.PubMedCrossRefGoogle Scholar
  66. Van der Helm, P. A., & Leeuwenberg, E. L. J. (1996). Goodness of visual regularities: A nontransformational approach. Psychological Review, 103, 429–456.PubMedCrossRefGoogle Scholar
  67. Van der Helm, P. A., & Leeuwenberg, E. L. J. (1999). A better approach to goodness: Reply to Wagemans (1999). Psychological Review, 106, 622–630.CrossRefGoogle Scholar
  68. Van der Helm, P. A., & Treder, M. S. (2009). Detection of (anti)symmetry and (anti)repetition: Perceptual mechanisms versus cognitive strategies. Vision Research, 49, 2754–2763. doi: 10.1016/j.visres.2009.08.015.PubMedCrossRefGoogle Scholar
  69. VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7, 207–213. doi: 10.1016/S1364-6613(03)00095-0.PubMedCrossRefGoogle Scholar
  70. VanRullen, R., & Thorpe, S. J. (2001). Is it a bird? Is it a plane? Ultra-rapid visual categorization of natural and artifactual objects. Perception, 30, 655–668. doi: 10.1068/p3029.PubMedCrossRefGoogle Scholar
  71. Vath, N., & Schmidt, T. (2007). Tracing sequential waves of rapid visuomotor activation in lateralized readiness potentials. Neuroscience, 145, 197–208.PubMedCrossRefGoogle Scholar
  72. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences USA, 100, 6275–6280.CrossRefGoogle Scholar
  73. Wagemans, J. (1993). Skewed symmetry: A nonaccidental property used to perceive visual forms. Journal of Experimental Psychology: Human Perception and Performance, 19, 364–380. doi: 10.1037/0096-1523.19.2.364.PubMedGoogle Scholar
  74. Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 9–32. doi: 10.1163/156856895X00098.PubMedCrossRefGoogle Scholar
  75. Wagemans, J. (1997). Characteristics and models of human symmetry detection. Trends in Cognitive Sciences, 1, 346–352. doi: 10.1016/S1364-6613(97)01105-4.PubMedCrossRefGoogle Scholar
  76. Wagemans, J., Van Gool, L., & d’Ydewalle, G. (1991). Detection of symmetry in tachistoscopically presented dot patterns: Effects of multiple axes and skewing. Perception & Psychophysics, 50, 413–427. doi: 10.3758/BF03205058.CrossRefGoogle Scholar
  77. Wagemans, J., Van Gool, L., & D’Ydewalle, G. (1992). Orientational effects and component processes in symmetry detection. Quarterly Journal of Experimental Psychology A, 44, 475–508. doi: 10.1080/14640749208401295.CrossRefGoogle Scholar
  78. Wagemans, J., Van Gool, L., Swinnen, V., & Van Horebeek, J. (1993). Higher-order structure in regularity detection. Vision Research, 33, 1067–1088. doi: 10.1016/0042-6989(93)90241-N.PubMedCrossRefGoogle Scholar
  79. Wenderoth, P. (1994). The salience of vertical symmetry. Perception, 23, 221–236. doi: 10.1068/p230221.PubMedCrossRefGoogle Scholar
  80. Wenderoth, P. (1997). The effects on bilateral symmetry detection of multiple symmetry, near symmetry, and axis orientation. Perception, 26, 891–904. doi: 10.1068/p260891.PubMedCrossRefGoogle Scholar
  81. Wenderoth, P. (2000). The differential effects of simultaneous and successive cueing on the detection of bilateral symmetry in dot patterns. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 53, 165–190.Google Scholar
  82. Wenderoth, P., & Welsh, S. (1998). Effects of pattern orientation and number of symmetry axes on the detection of mirror symmetry in dot and solid patterns. Perception, 27, 965–976. doi: 10.1068/p270965.PubMedCrossRefGoogle Scholar
  83. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt, II. Psychologische Forschung, 4, 301–350.CrossRefGoogle Scholar
  84. Zipser, K., Lamme, V. A. F., & Schiller, P. H. (1996). Contextual modulation in primary visual cortex. The Journal of Neuroscience, 16, 7376–7389.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Social Sciences, Psychology IUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations