Skip to main content
Log in

The impact of perceptual, cognitive and motor factors on bimanual coordination

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Bimanual coordination is governed by constraints that permit congruent movements to be performed more easily than incongruent movements. Theories concerning the origin of these constraints range from low level motor-muscle explanations to high level perceptual–cognitive ones. To elucidate the processes underlying coordinative constraints, we asked subjects to use a pair of left–right joysticks to acquire corresponding pairs of congruent and incongruent targets presented on a video monitor under task conditions designed to systematically modulate the impact of several perceptual–cognitive processes commonly required for bimanual task performance. These processes included decoding symbolic cues, detecting goal targets, conceptualizing movements in terms of goal target configuration, planning movement trajectories, producing saccades and perceiving visual feedback. Results demonstrate that constraints arise from target detection and trajectory planning processes that can occur prior to movement initiation as well as from inherent muscle properties that emerge during movement execution, and that the manifestation of these constraints can be significantly altered by the ability to visually monitor movement progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, N. B., Weigelt, M., Hazeltine, E., & Ivry, R. B. (2007). Target selection during bimanual reaching to direct cues is unaffected by the perceptual similarity of the targets. Journal of Experimental Psychology: Human Perception and Performance, 33(5), 1107–1116.

    Article  PubMed  Google Scholar 

  • Bernstein, N. (1967). The Co-ordination and Regulation of Movements. London: Pergamon Press.

    Google Scholar 

  • Blinch, J., Cameron, B. D., Franks, I. M., & Chua, R. (2011). Bimanual reaches with symbolic cues exhibit errors in target selection. Experimental Brain Research, 212(4), 541–554.

    Article  Google Scholar 

  • Bogaerts, H., Buekers, M. J., Zaal, F. T., & Swinnen, S. P. (2003). When visuo-motor incongruence aids motor performance: The effect of perceiving motion structures during transformed visual feedback on bimanual coordination. Behavioural Brain Research, 138(1), 45–57.

    Article  PubMed  Google Scholar 

  • Bogaerts, H., & Swinnen, S. P. (2001). Spatial interactions during bimanual coordination patterns: The effect of directional compatibility. Motor Control, 5(2), 183–199.

    PubMed  Google Scholar 

  • Boyles, J., Panzer, S., & Shea, C. H. (2012). Increasingly complex bimanual multi-frequency coordination patterns are equally easy to perform with on-line relative velocity feedback. Experimental Brain Research, 216(4), 515–525.

    Article  Google Scholar 

  • Cardoso de Oliveira, S., & Barthelemy, S. (2005). Visual feedback reduces bimanual coupling of movement amplitudes, but not of directions. Experimental Brain Research, 162(1), 78–88.

    Article  Google Scholar 

  • Carson, R. G., & Riek, S. (1998). The influence of joint position on the dynamics of perception-action coupling. Experimental Brain Research, 121(1), 103–114.

    Article  Google Scholar 

  • Cohen, L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Perceptual and Motor Skills, 32(2), 639–644.

    Article  PubMed  Google Scholar 

  • Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. (2003). Internal vs. external generation of movements: Differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage, 19, 764–776.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J., Hazeltine, E., Kennerley, S., & Ivry, R. B. (2001). Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychological Science, 12(6), 493–498.

    Article  PubMed  Google Scholar 

  • Diedrichsen, J., Hazeltine, E., Nurss, W. K., & Ivry, R. B. (2003). The role of the corpus callosum in the coupling of bimanual isometric force pulses. Journal of Neurophysiology, 90(4), 2409–2418.

    Article  PubMed  Google Scholar 

  • Franz, E. A. (2004). On the perceptual control of bimanual performance. Journal of Motor Behavior, 36(4), 380–381.

    PubMed  Google Scholar 

  • Franz, E. A., & McCormick, R. (2010). Conceptual unifying constraints override sensorimotor interference during anticipatory control of bimanual actions. Experimental Brain Research, 205(2), 273–282.

    Article  Google Scholar 

  • Franz, E. A., Zelaznik, H. N., & McCabe, G. (1991). Spatial topological constraints in a bimanual task. Acta Psychologica (Amst), 77(2), 137–151.

    Article  Google Scholar 

  • Franz, E. A., Zelaznik, H. N., Swinnen, S. S., & Walter, C. (2001). Spatial conceptual influences on the coordination of bimanual actions: When a dual task becomes a single task. Journal of Motor Behavior, 33(1), 103–112.

    Article  PubMed  Google Scholar 

  • Goodale, M. A., Westwood, D. A., & Milner, A. D. (2004). Two distinct modes of control for object-directed action. Progress in Brain Research, 144, 131–144.

    Article  PubMed  Google Scholar 

  • Goodman, D., & Kelso, J. A. (1980). Are movements prepared in parts? Not under compatible (naturalized) conditions. Journal of Experimental Psychology: General, 109(4), 475–495.

    Article  Google Scholar 

  • Hazeltine, E., Diedrichsen, J., Kennerley, S. W., & Ivry, R. B. (2003). Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters. Psychological Research, 67(1), 56–70.

    PubMed  Google Scholar 

  • Heuer, H., & Klein, W. (2006). The influence of movement cues on intermanual interactions. Psychological Research, 70(4), 229–244.

    Article  PubMed  Google Scholar 

  • Hoffman, J.E., Nelson, E., & Houck, M.R. (1983). The role of attentional resources in automatic detection. Cognitive Psychology, 51, 379–410.

    Google Scholar 

  • Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception and Psychophysics, 57(6), 787–795.

    Article  PubMed  Google Scholar 

  • Janczyk, M., Skirde, S., Weigelt, M., & Kunde, W. (2009). Visual and tactile action effects determine bimanual coordination performance. Human Movement Science, 28(4), 437–449.

    Article  PubMed  Google Scholar 

  • Kelso, J. A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology, 246(6 Pt 2), R1000–R1004.

    PubMed  Google Scholar 

  • Kelso, J. A., Southard, D. L., & Goodman, D. (1979). On the nature of human interlimb coordination. Science, 203(4384), 1029–1031.

    Article  PubMed  Google Scholar 

  • Kunde, W., Krauss, H., & Weigelt, M. (2009). Goal congruency without stimulus congruency in bimanual coordination. Psychological Research, 73, 34–42.

    Article  PubMed  Google Scholar 

  • Kunde, W., & Weigelt, M. (2005). Goal-congruency in bimanual object manipulation. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 145–156.

    Article  PubMed  Google Scholar 

  • Marteniuk, R. G., MacKenzie, C. L., & Baba, D. M. (1984). Bimanual movement control: Information processing and interaction effects. Quarterly Journal of Experimental Psychology, 36A, 335–365.

    Google Scholar 

  • Mechsner, F., Kerzel, D., Knoblich, G., & Prinz, W. (2001). Perceptual basis of bimanual coordination. Nature, 414(6859), 69–73.

    Article  PubMed  Google Scholar 

  • Obhi, S. S., & Haggard, P. (2004). Internally generated and externally triggered actions are physically distinct and independently controlled. Experimental Brain Research, 156(4), 518–523.

    Article  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Oliveira, F. T., & Ivry, R. B. (2008). The representation of action: Insights from bimanual coordination. Current Directions in Psychological Science, 17(2), 130–135.

    Article  PubMed  Google Scholar 

  • Rosenbaum, D. A. (1983). The movement precuing technique: Assumptions, application, and extension. In R. A. Magill (Ed.), Memory and control of action (pp. 271–274). Amsterdam: Elsevier.

    Google Scholar 

  • Rothkopf, C. A., Ballard, D. H., & Hayhoe, M. M. (2007). Task and context determine where you look. Journal of Vision, 7(14), 16.1–16.20.

    Article  Google Scholar 

  • Salter, J. E., Wishart, L. R., Lee, T. D., & Simon, D. (2004). Perceptual and motor contributions to bimanual coordination. Neuroscience Letters, 363(2), 102–107.

    Article  PubMed  Google Scholar 

  • Spijkers, W., Heuer, H., Kleinsorge, T., & van der Loo, H. (1997). Preparation of bimanual movements with same and different amplitudes: Specification interference as revealed by reaction time. Acta Psychologica, 96, 207–227.

    Article  Google Scholar 

  • Swinnen, S., Jardin, K., Meulenbroek, R., Dounskaia, N., & Brandt, H.-V. D. (1997). Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. Journal of Cognitive Neuroscience, 9(3), 348–377.

    Article  PubMed  Google Scholar 

  • Swinnen, S. P., Jardin, K., Verschueren, S., Meulenbroek, R., Franz, L., Dounskaia, N., et al. (1998). Exploring interlimb constraints during bimanual graphic performance: Effects of muscle grouping and direction. Behavioural Brain Research, 90(1), 79–87.

    Article  PubMed  Google Scholar 

  • Swinnen, S. P., Puttemans, V., Vangheluwe, S., Wenderoth, N., Levin, O., & Dounskaia, N. (2003). Directional interference during bimanual coordination: Is interlimb coupling mediated by afferent or efferent processes. Behavioural Brain Research, 139(1–2), 177–195.

    Article  PubMed  Google Scholar 

  • Weigelt, C., & Cardoso de Oliveira, S. (2003). Visuomotor transformations affect bimanual coupling. Experimental Brain Research, 148(4), 439–450.

    Google Scholar 

Download references

Acknowledgments

This research was supported by grant HD35955 from the National Institutes of Health and the Johnston Family Research Fund. The authors would like to thank Drs. R.B. Ivry, J. Diedrichsen and R. Pfister as well as several anonymous reviewers for insightful and instructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Stanford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procacci, N.M., Stanford, T.R. The impact of perceptual, cognitive and motor factors on bimanual coordination. Psychological Research 77, 794–807 (2013). https://doi.org/10.1007/s00426-012-0468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0468-2

Keywords

Navigation