Skip to main content

Resolution of outcome-induced response conflict by humans after extended training

Abstract

Studies of incongruent discrimination learning, where the outcome event of one response acts as the discriminative stimulus for the opposite response, suggest that humans rely on habitual stimulus–response (S–R) associations when outcome–response (O–R) associations would cause response conflict. Here, two experiments were conducted to investigate the robustness of this habitual strategy. In Experiment 1, we found that extensive instrumental discrimination training supported learning about the incongruent R → O contingencies, as assessed by an outcome devaluation test. Differential representations of the stimulus and the (associatively retrieved) outcome may have allowed for goal-directed incongruent performance. Experiment 2 failed to provide evidence for this possibility; direct presentation as well as associative retrieval of the incongruent events (by Pavlovian stimuli) activated the response that was associated with each event in its role of stimulus as opposed to outcome. We did find that participants successfully acquired explicit knowledge of the incongruent contingencies, which raises the possibility that propositional encoding allowed them to overcome the response conflict caused by O–R associations. Alternative associative and propositional accounts of successful goal-directed incongruent performance with extensive training will be discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. Quarterly Journal of Experimental Psychology, 34B, 77–98.

    Google Scholar 

  2. Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.

    PubMed  Article  Google Scholar 

  3. Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1), 48–69. doi:10.1038/npp.2009.131.

    PubMed  Article  Google Scholar 

  4. Colwill, R. M., & Motzkin, D. K. (1994). Encoding of the unconditioned stimulus in Pavlovian conditioning. Animal Learning & Behavior, 22(4), 384–394.

    Article  Google Scholar 

  5. Colwill, R. M., & Rescorla, R. A. (1985). Instrumental responding remains sensitive to reinforcer devaluation after extensive training. Journal of Experimental Psychology: Animal Behavior Processes, 11, 520–536.

    Article  Google Scholar 

  6. Colwill, R. M., & Rescorla, R. A. (1988). The role of response-reinforcer associations increases throughout extended instrumental training. Animal Learning & Behavior, 16(1), 105–111.

    Article  Google Scholar 

  7. Corbit, L. H., & Balleine, B. W. (2003). The role of prelimbic cortex in instrumental conditioning. Behavioural Brain Research, 146(1–2), 145–157.

    PubMed  Article  Google Scholar 

  8. Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.

    PubMed  Article  Google Scholar 

  9. de Wit, S., Barker, R. A., Dickinson, T., & Cools, R. (2011). Habitual versus goal-directed action control in Parkinson’s disease. Journal of Cognitive Neuroscience, 23(5), 1218–1229. doi:10.1162/jocn.2010.21514.

    PubMed  Article  Google Scholar 

  10. de Wit, S., Corlett, P. R., Aitken, M. R., Dickinson, A., & Fletcher, P. C. (2009a). Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. Journal of Neuroscience, 29(36), 11330–11338. doi:10.1523/JNEUROSCI.1639-09.2009.

    PubMed  Article  Google Scholar 

  11. de Wit, S., & Dickinson, A. (2009). Associative theories of goal-directed behaviour: a case for animal–human translational models. Psychological Research, 73(4), 463–476.

    PubMed  Article  Google Scholar 

  12. de Wit, S., Kosaki, Y., Balleine, B., & Dickinson, A. (2006). Dorsomedial prefrontal cortex resolves response conflict in rats. Journal of Neuroscience, 26(19), 5224–5229.

    PubMed  Article  Google Scholar 

  13. de Wit, S., Niry, D., Wariyar, R., Aitken, M. R. F., & Dickinson, A. (2007). Stimulus-outcome interactions during conditional discrimination learning by rats and humans. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 1–11.

    PubMed  Article  Google Scholar 

  14. de Wit, S., Ostlund, S. B., Balleine, B. W., & Dickinson, A. (2009b). Resolution of conflict between goal-directed actions: outcome encoding and neural control processes. Journal of Experimental Psychology: Animal Behavior Processes, 35(3), 382–393. doi:10.1037/a0014793.

    PubMed  Article  Google Scholar 

  15. de Wit, S., Standing, H. R., DeVito, E. E., Robinson, O. J., Ridderinkhof, K. R., Robbins, T. W., et al. (2012a). Reliance on habits at the expense of goal-directed control following dopamine precursor depletion. Psychopharmacology (Berl), 219, 621–631.

    Article  Google Scholar 

  16. de Wit, S., Watson, P., Harsay, H. A., Cohen, M. X., van de Vijver, I., & Ridderinkhof, K. R. (2012b). Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control. Journal of Neuroscience, 32(35), 12066–12075.

    PubMed  Article  Google Scholar 

  17. Dickinson, A. (1980). Contemporary animal learning theory. Cambridge: Cambridge University Press.

    Google Scholar 

  18. Dickinson, A., & Balleine, B. (1994). Motivational control of goal-directed action. Animal Learning & Behavior, 22(1), 1–18.

    Article  Google Scholar 

  19. Dickinson, A., Balleine, B., Watt, A., Gonzalez, F., & Boakes, R. (1995). Motivational control after extended instrumental training. Animal Learning & Behavior, 23(2), 197–206.

    Article  Google Scholar 

  20. Dickinson, A., & de Wit, S. (2003). The interaction between discriminative stimuli and outcomes during instrumental learning. Quarterly Journal of Experimental Psychology, 56B(1), 127–139.

    Google Scholar 

  21. Dwyer, D. M., Dunn, M. J., Rhodes, S. E. V., & Killcross, A. S. (2010). Lesions of the prelimbic prefrontal cortex prevent response conflict produced by action-outcome associations. The Quarterly Journal of Experimental Psychology, 63(3), 417–424.

    PubMed  Article  Google Scholar 

  22. Evans, D. W., Lewis, M. D., & Iobst, E. (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder. Brain and Cognition, 55(1), 220–234.

    PubMed  Article  Google Scholar 

  23. Everitt, B. J., Dickinson, A., & Robbins, T. W. (2001). The neuropsychological basis of addictive behavior. Brain Research Reviews, 36(2–3), 129–138.

    PubMed  Article  Google Scholar 

  24. Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., et al. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. American Journal of Psychiatry, 168(7), 718–726. doi:10.1176/appi.ajp.2011.10071062.

    PubMed  Article  Google Scholar 

  25. Greve, W. (2001). Traps and gaps in action explanation: theoretical problems of a psychology of human action. Psychological Review, 108, 435–451.

    PubMed  Article  Google Scholar 

  26. Heyes, C., & Dickinson, A. (1990). The intentionality of animal action. Mind and Language, 5, 87–104.

    Article  Google Scholar 

  27. Hogarth, L., Dickinson, A., Wright, A., Kouvaraki, M., & Duka, T. (2007). The role of drug expectancy in the control of human drug seeking. Journal of Experimental Psychology: Animal Behavior Processes, 33(4), 484–496.

    PubMed  Article  Google Scholar 

  28. Holland, P. C. (2004). Relations between Pavlovian-instrumental transfer and reinforcer devaluation. Journal of Experimental Psychology-Animal Behavior Processes, 30(2), 104–117.

    PubMed  Article  Google Scholar 

  29. Holmes, N. M., Marchand, A. R., & Coutureau, E. (2010). Pavlovian to instrumental transfer: a neurobehavioural perspective. Neuroscience and Biobehavioral Reviews, 34(8), 1277–1295. doi:10.1016/j.neubiorev.2010.03.007.

    PubMed  Article  Google Scholar 

  30. Hommel, B. (2003). Planning and Representing Intentional Action. The Scientific World Journal, 3, 593–608.

    Article  Google Scholar 

  31. James, W. (1890a). Habit: Henry Holt & Co.

  32. James, W. (1890b). The principles of psychology. New York: Dover Publications.

    Book  Google Scholar 

  33. Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13(4), 400–408.

    PubMed  Article  Google Scholar 

  34. Klossek, U. M., & Dickinson, A. (2011). Rational action selection in 1(1/2)- to 3-year-olds following an extended training experience. Journal of Experimental Child Psychology, 111(2), 197–211. doi:10.1016/j.jecp.2011.08.008.

    PubMed  Article  Google Scholar 

  35. Kosaki, Y., & Dickinson, A. (2010). Choice and contingency in the development of behavioral autonomy during instrumental conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 36(3), 334–342. doi:10.1037/a0016887.

    PubMed  Article  Google Scholar 

  36. Pavlov, I. P. (1932). The reply of a physiologist to psychologists. Psychological Review, 39, 91–127.

    Article  Google Scholar 

  37. Ridderinkhof, K. R., Forstmann, B. U., Wylie, S., Burle, B., & van den Wildenberg, W. P. M. (2011). Neurocognitive mechanisms of action control: resisting the call of the Sirens. Wylie Interdisciplinary Reviews (WIREs) Cognitive Science, 2, 174–192.

    Article  Google Scholar 

  38. Seger, C. A., & Spiering, B. J. (2011). A critical review of habit learning and the Basal Ganglia. Frontiers in Systems Neuroscience, 5, 66. doi:10.3389/fnsys.2011.00066.

    PubMed  Article  Google Scholar 

  39. Shanks, D. R. (1995). The psychology of associative learning. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  40. Thorndike, E. L. (1911). Animal Intelligence: experimental studies. New York: Macmillan.

    Book  Google Scholar 

  41. Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. European Journal of Neuroscience, 29(11), 2225–2232. doi:10.1111/j.1460-9568.2009.06796.x.

    PubMed  Article  Google Scholar 

  42. Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. Journal of Neuroscience, 27(15), 4019–4026.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the undergraduate students who helped to run this study: Abena Dlakavu, Lucy Gledhill, Yi Fan Lim and Paul Wallace. Furthermore, we are grateful to Dr. Mike Aitken and Tarik Barri for programming support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanne de Wit.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Wit, S., Ridderinkhof, K.R., Fletcher, P.C. et al. Resolution of outcome-induced response conflict by humans after extended training. Psychological Research 77, 780–793 (2013). https://doi.org/10.1007/s00426-012-0467-3

Download citation

Keywords

  • Congruence Effect
  • Discriminative Stimulus
  • Discrimination Training
  • Response Conflict
  • Associative Structure