Psychological Research

, Volume 77, Issue 5, pp 555–574 | Cite as

Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control

Original Article

Abstract

Active navigation research examines how physiological and psychological involvement in navigation benefits spatial learning. However, existing conceptualizations of active navigation comprise separable, distinct factors. This research disentangles the contributions of movement control (i.e., self-contained vs. observed movement) as a central factor from learning intention (Experiment 1), instruction specificity and instruction control (Experiment 2), as well as navigation control (Experiment 3) to spatial learning in virtual environments. We tested the effects of these factors on landmark recognition (landmark knowledge), tour-integration and route navigation (route knowledge). Our findings suggest that movement control leads to robust advantages in landmark knowledge as compared to observed movement. Advantages in route knowledge do not depend on learning intention, but on the need to elaborate spatial information. Whenever the necessary level of elaboration is assured for observed movement, too, the development of route knowledge is not inferior to that for self-contained movement.

References

  1. Baddeley, A. D. (1982). Domains of recollection. Psychological Review, 89(6), 708–729.CrossRefGoogle Scholar
  2. Bakdash, J. Z., Linkenauger, S. A., & Proffitt, D. (2008). Comparing decision-making and control for learning a virtual environment: Backseat drivers learn where they are going. Paper presented at the Human Factors and Ergonomics Society Annual Meeting.Google Scholar
  3. Brooks, B. M., Attree, E. A., Rose, F. D., Clifford, B. R., & Leadbetter, A. G. (1999). The specificity of memory enhancement during interaction with a virtual environment. Memory, 7(1), 65–78. doi:10.1080/741943713.PubMedCrossRefGoogle Scholar
  4. Carassa, A., Geminiani, G., Morganti, F., & Varotto, S. (2002). Active and passive spatial learning in a complex environment: The effect of efficient exploration. Cognitive Processing, 4, 65–81.Google Scholar
  5. Cohen, J. (1977). Statistical power analysis for the behavioral sciences (Rev ed.). Hillsdale: Lawrence Erlbaum Associates, Inc.Google Scholar
  6. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329–340. doi:10.1016/j.jenvp.2004.08.006.CrossRefGoogle Scholar
  7. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–684. doi:10.1016/S0022-5371(72)80001-X.CrossRefGoogle Scholar
  8. Dayan, A., & Thomas, J. R. (1994). Intention to remember spatial location in movement: developmental considerations. Human Performance, 7(1), 37–53. doi:10.1207/s15327043hup0701_4.CrossRefGoogle Scholar
  9. Farrell, M. J., Arnold, P., Pettifer, S., Adams, J., Graham, T., & MacManamon, M. (2003). Transfer of route learning from virtual to real environments. Journal of Experimental Psychology: Applied, 9(4), 219–227. doi:10.1037/1076-898X.9.4.219.PubMedCrossRefGoogle Scholar
  10. Fenech, E. P., Drews, F. A., & Bakdash, J. Z. (2010). The effects of acoustic turn-by-turn navigation on wayfinding. Human Factors and Ergonomics Society Annual Meeting, 54, 1926–1930.CrossRefGoogle Scholar
  11. Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(3), 506–515.PubMedCrossRefGoogle Scholar
  12. Foo, P., Warren, W. H., Duchon, A., & Tarr, M. J. (2005). Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(2), 195–215. doi:10.1037/0278-7393.31.2.195.PubMedCrossRefGoogle Scholar
  13. Gaunet, F., Vidal, M., Kemeny, A., & Berthoz, A. (2001). Active, passive and snapshot exploration in a virtual environment: Influence on scene memory, reorientation and path memory. Cognitive Brain Research, 11, 409–420. doi:10.1016/S0926-6410(01)00013-1.PubMedCrossRefGoogle Scholar
  14. Hahm, J., Lee, K., Lim, S.-L., Kim, S.-Y., Kim, H.-T., & Lee, J.-H. (2007). Effects of active navigation on object recognition in virtual environments. CyberPsychology and Behavior, 10(2), 305–308.PubMedCrossRefGoogle Scholar
  15. Herman, J. F., Kolker, R. G., & Shaw, M. L. (1982). Effects of motor activity on children’s intentional and incidental memory for spatial locations. Child Development, 53(1), 239–244. doi:10.2307/1129658.PubMedCrossRefGoogle Scholar
  16. Hyde, T. S., & Jenkins, J. J. (1969). Differential effects of incidental tasks on the organization of recall of a list of highly associated words. Journal of Experimental Psychology, 82(3), 472–481. doi:10.1037/h0028372.CrossRefGoogle Scholar
  17. Iachini, T., Ruotolo, F., & Ruggiero, G. (2009). The effects of familiarity and gender of spatial representation. Journal of Environmental Psychology, 29, 227–234. doi:10.1016/j.jenvp.2008.07.001.CrossRefGoogle Scholar
  18. Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765–779. doi:10.1007/BF01544230.CrossRefGoogle Scholar
  19. Lockhart, R. S., & Craik, F. I. M. (1980). Levels of processing: A retrospective commentary on a framework for memory research. Canadian Journal of Psychology/Revue canadienne de psychologie, 44(1), 887–112. doi: 10.1037/h0084237.Google Scholar
  20. Magliano, J. P., Cohen, R., Allen, G. L., & Rodrigue, J. R. (1995). The impact of wayfinder’s goals on learning a new environment: Different types of spatial knowledge as goals. Journal of Environmental Psychology, 15, 65–75. doi:10.1016/0272-4944(95)90015-2.CrossRefGoogle Scholar
  21. Mandler, G. (1967). Organization and memory. In K. W. Spence & J. T. Spence (Eds.), The Psychology of Learning and Motivation (Vol. 1, pp. 327–372). New York: Academic Press.Google Scholar
  22. Miller, J., & Carlson, L. (2011). Selecting landmarks in novel environments. Psychonomic Bulletin and Review, 18(1), 184–191. doi:10.3758/s13423-010-0038-9.PubMedCrossRefGoogle Scholar
  23. Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. J. Egenhofer & R. G. Golledge (Eds.), Spatial and Temporal Reasoning in Geographic Information Systems (pp. 143–154). New York: Oxford University Press.Google Scholar
  24. Montello, D. R. (2005). Navigation. In P. Shah & A. Miyake (Eds.), The Cambridge Handbook of Visuospatial Thinking (pp. 257–294). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26, 300–308. doi:10.1016/j.jenvp.2006.08.001.CrossRefGoogle Scholar
  26. Pazzaglia, F., & De Beni, R. (2001). Strategies of processing spatial information in survey and landmark-centred individuals. European Journal of Cognitive Psychology, 13(4), 493–508. doi:10.1080/09541440125778.Google Scholar
  27. Péruch, P., Vercher, J.-L., & Gauthier, G. M. (1995). Acquisition of spatial knowledge through visual exploration of simulated environments. Ecological Psychology, 7(1), 1–20. doi:10.1207/s15326969eco0701_1.CrossRefGoogle Scholar
  28. Péruch, P., & Wilson, P. N. (2004). Active versus passive learning and testing in a complex outside built environment. Cognitive Processing, 5, 218–227. doi:10.1007/s10339-004-0027-x.CrossRefGoogle Scholar
  29. Reagan, I., & Baldwin, C. L. (2006). Facilitating route memory with auditory route guidance systems. Journal of Environmental Psychology, 26, 146–155. doi:10.1016/j.jenvp.2006.06.002.CrossRefGoogle Scholar
  30. Rossano, M. J., & Reardon, W. P. (1999). Goal specificity and the acquisition of survey knowledge. Environment and Behavior, 31, 395–412. doi:10.1177/00139169921972164.CrossRefGoogle Scholar
  31. Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in “desk-top” virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology: Applied, 3(2), 143–159. doi:10.1037//1076-898X.3.2.143.CrossRefGoogle Scholar
  32. Shelton, A. L., & McNamara, T. P. (2004). Orientation and perspective dependence in route and survey learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(1), 158–170.PubMedCrossRefGoogle Scholar
  33. Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in Child Development and Behavior (Vol. 10, pp. 9–55). New York: Academic Press.Google Scholar
  34. Taylor, H. A., Naylor, S. J., & Chechile, N. A. (1999). Goal-specific influences on the representation of spatial perspective. Memory & Cognition, 27(2), 309–319. doi:10.3758/BF03211414.CrossRefGoogle Scholar
  35. Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology, 14(4), 560–589. doi:10.1016/0010-0285(82)90019-6.PubMedCrossRefGoogle Scholar
  36. van Asselen, M., Fritschy, E., & Postma, A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. Psychological Research, 70, 151–156. doi:10.1007/s00426-004-0199-0.PubMedCrossRefGoogle Scholar
  37. von Stülpnagel, R., & Steffens, M. C. (2012). Can active navigation be as good as driving? A comparison of spatial memory in drivers and backseat-drivers. Journal of Experimental Psychology: Applied, 18(2), 162–177. doi:10.1037/a0027133.Google Scholar
  38. Waller, D. (2000). Individual differences in spatial learning from computer-simulated environments. Journal of Experimental Psychology: Applied, 6(4), 307–321.PubMedCrossRefGoogle Scholar
  39. Wallet, G., Sauzéon, H., Rodrigues, J., & N’Kaoua, B. (2008). Use of virtual reality for spatial knowledge transfer: Effects of passive/active exploration mode in simple and complex routes for three different recall tasks. Bordeaux: Paper presented at the ACM Symposium on Virtual Reality Software and Technology.Google Scholar
  40. Wiener, J. M., Ehbauer, N. N., & Mallot, H. A. (2009). Planning paths to multiple targets: memory involvement and planning heuristics in spatial problem solving. Psychological Research, 73(5), 644–658. doi:10.1007/s00426-008-0181-3.PubMedCrossRefGoogle Scholar
  41. Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33, 100–110. doi:10.1016/j.compenvurbsys.2009.01.004.CrossRefGoogle Scholar
  42. Wilson, P. N. (1999). Active exploration of a virtual environment does not promote orientation or memory for objects. Environment and Behavior, 31, 752–763. doi:10.1177/00139169921972335.CrossRefGoogle Scholar
  43. Wilson, P. N., Foreman, N., Gillett, R., & Stanton, D. (1997). Active versus passive processing of spatial information in a computer simulated environment. Ecological Psychology, 9(3), 207–222. doi:10.1207/s15326969eco0903_3.CrossRefGoogle Scholar
  44. Witmer, B. G., Bailey, J. H., & Knerr, B. W. (1996). Virtual spaces and real world places: Transfer of route knowledge. International Journal of Human-Computer Studies, 45, 413–428. doi:10.1006/ijhc.1996.0060.CrossRefGoogle Scholar
  45. Zimmer, H. D. (2004). The construction of mental maps based on a fragmentary view of physical maps. Journal of Educational Psychology, 96(3), 603–610.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut für PsychologieFriedrich Schiller University JenaJenaGermany

Personalised recommendations