Advertisement

Psychological Research

, Volume 77, Issue 4, pp 399–421 | Cite as

Conditional automaticity in subliminal morphosyntactic priming

  • Ulrich Ansorge
  • Bert Reynvoet
  • Jessica Hendler
  • Lennart Oettl
  • Stefan Evert
Original Article
  • 264 Downloads

Abstract

We used a gender-classification task to test the principles of subliminal morphosyntactic priming. In Experiment 1, masked, subliminal feminine or masculine articles were used as primes. They preceded a visible target noun. Subliminal articles either had a morphosyntactically congruent or incongruent gender with the targets. In a gender-classification task of the target nouns, subliminal articles primed the responses: responses were faster in congruent than incongruent conditions (Experiment 1). In Experiment 2, we tested whether this congruence effect depended on gender relevance. In line with a relevance-dependence, the congruence effect only occurred in a gender-classification task but was absent in another categorical discrimination of the target nouns (Experiment 2). The congruence effect also depended on correct word order. It was diminished when nouns preceded articles (Experiment 3). Finally, the congruence effect was replicated with a larger set of targets but only for masculine targets (Experiment 4). Results are discussed in light of theories of subliminal priming in general and of subliminal syntactic priming in particular.

Keywords

Congruence Effect Incongruent Condition Prime Word Mental Lexicon Definite Article 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by GRC Grants AN 393/2-1 and AN 393/5-1 (Germany).

References

  1. Ansorge, U., Fuchs, I., Khalid, S., & Kunde, W. (2011). No conflict control in the absence of awareness. Psychological Research, 75, 351–365.PubMedCrossRefGoogle Scholar
  2. Ansorge, U., Kiss, M., & Eimer, M. (2009). Goal-driven attentional capture by invisible colours: Evidence from event-related potentials. Psychonomic Bulletin & Review, 16, 648–653.CrossRefGoogle Scholar
  3. Ansorge, U., & Neumann, O. (2005). Intentions determine the effect of invisible metacontrast-masked primes: Evidence for top-down contingencies in a peripheral cueing task. Journal of Experimental Psychology: Human Perception and Performance, 31, 762–777.PubMedCrossRefGoogle Scholar
  4. Ayora, P., Janssen, N., Dell’Acqua, R., & Alario, F.-X. (2009). Attentional requirements for the selection of words from different grammatical categories. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1344–1351.PubMedCrossRefGoogle Scholar
  5. Bargh, J. A. (1992). The ecology of automaticity: Toward establishing the conditions needed to produce automatic processing effects. American Journal of Psychology, 105, 181–199.PubMedCrossRefGoogle Scholar
  6. Bock, K., Loebell, H., & Morey, R. (1992). Frome conceptual roles to structural relations: Bridging the syntactic cleft. Psychological Review, 99, 150–171.PubMedCrossRefGoogle Scholar
  7. Brants, S., Dipper, S., Hansen, S., Lezius, W., & Smith, G. (2002). The TIGER treebank. Proceedings of the Workshop on Treebanks and Linguistic Theories. Sozopol, Bulgaria.Google Scholar
  8. Coane, J. H., & Balota, D. A. (2010). Repetition priming across distinct contexts: Effects of lexical status, word frequency, and retrieval test. Quarterly Journal of Experimental Psychology, 63, 2367–2398.Google Scholar
  9. Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407–428.CrossRefGoogle Scholar
  10. Damian, M. F. (2001). Congruity effects evoked by subliminally presented primes: Automaticity rather than semantic processing. Journal of Experimental Psychology: Human Perception and Performance, 27, 154–164.PubMedCrossRefGoogle Scholar
  11. Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. (1998). Imaging unconscious semantic priming. Nature, 395, 597–600.PubMedCrossRefGoogle Scholar
  12. Dent, K., Johnston, R. A., & Humphreys, G. W. (2008). Age of acquisition and word frequency effects in picture naming: A dual-task investigations. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 282–301.PubMedCrossRefGoogle Scholar
  13. Fayol, M., Largy, P., & Lemaire, P. (1994). Cognitive overload and orthographic errors: When cognitive overload enhances subject-verb agreement errors. A study in French written language. The Quarterly Journal of Experimental Psychology, 47A, 437–464.Google Scholar
  14. Ferreira, V. F., Bock, K., Wilson, M. P., & Cohen, N. J. (2008). Memory for syntax despite amnesia. Psychological Science, 19, 940–946.PubMedCrossRefGoogle Scholar
  15. Ferreira, V. S., & Pashler, H. (2002). Central bottleneck influences on the processing stages of word production. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28, 1187–1199.PubMedCrossRefGoogle Scholar
  16. Finkbeiner, M., & Palermo, R. (2009). The role of spatial attention in nonconscious processing: A comparison of face and non-face stimuli. Psychological Science, 20, 42–51.PubMedCrossRefGoogle Scholar
  17. Flores d’Arcais, G. B. (1988). Automatic processes in language comprehension. In B. Denes, C. Semenza, & P. Bisiach (Eds.), Perspectives on cognitive neuropsychology (pp. 93–114). Mawah: Leah.Google Scholar
  18. Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W. E. Cooper & E. C. T. Walker (Eds.), Sentence processing (pp. 27–85). New Jersey: Erlbaum.Google Scholar
  19. Forster, K. I. (1998). The pros and cons of masked priming. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10, 680–698.CrossRefGoogle Scholar
  20. Friedrici, A. D., & Jacobsen, T. (1999). Processing grammatical gender during language comprehension. Journal of Psycholinguistic Research, 28, 467–484.CrossRefGoogle Scholar
  21. Friederici, A. D., & Weissenborn, J. (2007). Mapping sentence form onto meaning: The syntax-semantic interface. Brain Research, 1146, 50–58.PubMedCrossRefGoogle Scholar
  22. Garrett, M. F. (1988). Processes in language production. In F. N. Newmeyer (Ed.), Language: Psychological and biological aspects (pp. 69–96). New York: Cambridge University Press.Google Scholar
  23. Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  24. Greenwald, A. G., Draine, S. C., & Abrams, R. L. (1996). Three cognitive markers of unconscious semantic activation. Science, 273, 1699–1702.PubMedCrossRefGoogle Scholar
  25. Gunter, T. C., Friedrici, A. D., & Schriefers, H. (2000). Syntactic gender and semantic expectancy: ERPs reveal early autonomy and late interaction. Journal of Cognitive Neuroscience, 12, 556–568.PubMedCrossRefGoogle Scholar
  26. Haagort, P., & Brown, C. M. (1999). Gender electrified: ERP evidence on the syntactic nature of gender processing. Journal of Psycholinguistic Research, 28, 715–728.CrossRefGoogle Scholar
  27. Hasting, A. S., & Kotz, S. A. (2008). Speeding up syntax: On the relative timing and automaticity of local phrase structure and morphosyntactic processing as reflected in event-related brain potentials. Journal of Cognitive Neuroscience, 20, 1207–1219.PubMedCrossRefGoogle Scholar
  28. Jescheniak, J. D., & Levelt, J. M. (1994). Word frequency effects in speech production: Retrieval of syntactic information and of phonological form. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20, 824–843.CrossRefGoogle Scholar
  29. Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman, R. Davies, & J. Beatty (Eds.), Varieties of attention (pp. 29–61). New York: Academic Press.Google Scholar
  30. Kiefer, M. (2002). The N400 is modulated by unconsciously perceived masked words: Further evidence for a spreading activation account of N400 priming effects. Cognitive Brain Research, 13, 27–39.PubMedCrossRefGoogle Scholar
  31. Kiefer, M., & Martens, U. (2010). Attentional sensitization of unconscious cognition: Task sets modulate subsequent masked semantic priming. Journal of Experimental Psychology: General, 139, 464–489.CrossRefGoogle Scholar
  32. Kjellmer, G. (1991). A mint of phrases. In K. Ajmer & B. Altenberg (Eds.), English corpus linguistics. London: Longman.Google Scholar
  33. Koester, D., Gunter, T. C., & Wagner, S. (2007). The morphosyntactic decomposition and semantic composition of German compound words investigated by ERP. Brain and Language, 102, 64–79.PubMedCrossRefGoogle Scholar
  34. Kouider, S., & Dupoux, E. (2004). Partial awareness creates the “illusion” of subliminal semantic priming. Psychological Science, 15, 75–81.PubMedCrossRefGoogle Scholar
  35. Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88, 223–242.PubMedCrossRefGoogle Scholar
  36. Kunde, W., Reuss, H., & Kiesel, A. (2012). Consciousness and cognitive control. Advances in Cognitive Psychology, 8, 9–18.PubMedGoogle Scholar
  37. Marcel, A. (1983). Conscious and unconscious perception: Experiments on visual masking and word recognition. Cognitive Psychology, 15, 197–237.PubMedCrossRefGoogle Scholar
  38. Martens, U., Ansorge, U., & Kiefer, M. (2011). Controlling the unconscious: Attentional task sets modulate subliminal semantic and visuo-motor processes differentially. Psychological Science, 22, 282–291.PubMedCrossRefGoogle Scholar
  39. Mattler, U. (2006). On the locus of priming and inverse priming effects. Perception & Psychophysics, 68, 975–991.CrossRefGoogle Scholar
  40. Michelbacher, L., Evert, S., & Schütze, H. (2007). Asymmetric association measures. Proceedings of the international conference on recent advances in natural language processing. Borovets, Bulgaria.Google Scholar
  41. Naccache, L., & Dehaene, S. (2001). Unconscious semantic priming extends to novel unseen stimuli. Cognition, 80, 215–229.PubMedCrossRefGoogle Scholar
  42. Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless spreading of activation and limited-capacity attention. Journal of Experimental Psychology: General, 106, 226–254.CrossRefGoogle Scholar
  43. Norris, D., & Kinoshita, S. (2008). Perception as evidence accumulation and Bayesian inference: Insights from masked priming. Journal of Experimental Psychology: General, 137, 433–455.CrossRefGoogle Scholar
  44. Plaut, D. C., & Booth, J. R. (2000). Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107, 786–823.PubMedCrossRefGoogle Scholar
  45. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition (pp. 55–85). Hillsdale: Erlbaum.Google Scholar
  46. Pulvermüller, F., Shtyrov, Y., Hasting, A. S., & Carlyon, R. P. (2008). Syntax as a reflex. Neurophysiological evidence for early automaticity of grammatical processing. Brain and Language, 104, 244–253.PubMedCrossRefGoogle Scholar
  47. Reingold, E. M., & Merikle, P. (1988). Using direct and indirect measures to study perception without awareness. Perception & Psychophysics, 44, 563–575.CrossRefGoogle Scholar
  48. Reingold, E. M., & Merikle, P. (1990). On the inter-relatedness of theory and measurement in the study of unconscious processes. Mind and Language, 5, 9–28.CrossRefGoogle Scholar
  49. Reynvoet, B., Gevers, W., & Caessens, B. (2005). Unconscious primes activate motor codes through semantics. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31, 991–1000.PubMedCrossRefGoogle Scholar
  50. Sereno, J. A. (1991). Graphemic, associative, and syntactic priming effects at a brief stimulus onset asynchrony in lexical decision and naming. Journal of Experimental Psychology. Learning, Memory, and Cognition, 17, 459–477.CrossRefGoogle Scholar
  51. Van den Bussche, E., & Reynvoet, B. (2007). Masked priming effects in semantic categorization are independent of category size. Experimental Psychology, 54, 225–235.PubMedCrossRefGoogle Scholar
  52. van Opstal, F., Reynvoet, B., & Verguts, T. (2005). Unconscious semantic categorization and mask interactions: An elaborate response to Kunde et al. (2005). Cognition, 97, 107–113.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ulrich Ansorge
    • 1
    • 2
  • Bert Reynvoet
    • 3
  • Jessica Hendler
    • 2
  • Lennart Oettl
    • 2
  • Stefan Evert
    • 4
  1. 1.Faculty of PsychologyUniversity of ViennaViennaAustria
  2. 2.Institute of Cognitive ScienceUniversity of OsnabrueckOsnabrueckGermany
  3. 3.Department of PsychologyUniversity of LeuvenLeuvenBelgium
  4. 4.Institute of Comparative Linguistics and Literature StudiesTechnical University DarmstadtDarmstadtGermany

Personalised recommendations