Skip to main content
Log in

How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Seeing an object activates both visual and action codes in the brain. Crucial evidence supporting this view is the observation of object to response compatibility effects: perception of an object can facilitate or interfere with the execution of an action (e.g., grasping) even when the viewer has no intention of interacting with the object. TRoPICALS is a computational model that proposes some general principles about the brain mechanisms underlying compatibility effects, in particular the idea that top-down bias from prefrontal cortex, and whether it conflicts or not with the actions afforded by an object, plays a key role in such phenomena. Experiments on compatibility effects using a target and a distractor object show the usual positive compatibility effect of the target, but also an interesting negative compatibility effect of the distractor: responding with a grip compatible with the distractor size produces slower reaction times than the incompatible case. Here, we present an enhanced version of TRoPICALS that reproduces and explains these new results. This explanation is based on the idea that the prefrontal cortex plays a double role in its top-down guidance of action selection producing: (a) a positive bias in favour of the action requested by the experimental task; (b) a negative bias directed to inhibiting the action evoked by the distractor. The model also provides testable predictions on the possible consequences of damage to volitional circuits such as in Parkinsonian patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arbib, M. A. (1997). From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation. Philosophical Transactions of The Royal Society B Biological Sciences, 352, 1429–1436.

    Article  Google Scholar 

  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.

    Article  PubMed  Google Scholar 

  • Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14, 212–217.

    Article  PubMed  Google Scholar 

  • Berthier, N. E., Rosenstein, M. T., & Barto, A. G. (2005). Approximate optimal control as a model for motor learning. Psychological Review, 112, 329–346.

    Article  PubMed  Google Scholar 

  • Borghi, A. M., Di Ferdinando, A., & Parisi, D. (2011). Objects, spatial compatibility, and affordances: A connectionist study. Cognitive Systems Research, 12, 33–44.

    Article  Google Scholar 

  • Caligiore, D., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010a). TRoPICALS: A computational embodied neuroscience model of compatibility effects. Psychological Review, 117, 1188–1228.

    Article  PubMed  Google Scholar 

  • Caligiore, D., Borghi, A.M., Parisi, D., Ellis, R., Cangelosi, A., & Baldassarre, G. (2011). Affordances of distractors and compatibility effects: A study with the computational model TRoPICALS. Available from Nature Precedings (http://dx.doi.org/10.1038/npre.2011.5848.1).

  • Caligiore, D., Ferrauto, T., Parisi, D., Accornero, N., Capozza, M., & Baldassare, G. (2008). Using motor babbling and Hebb rules for modeling the development of reaching with obstacles and grasping. In R. Dillmann, C. Maloney, G. Sandini, T. Asfour, G. Cheng, G. Metta, & A. Ude (Eds.), International Conference on Cognitive Systems (pp. E1–E8). Karlsruhe: University of Karlsruhe.

    Google Scholar 

  • Caligiore, D., Guglielmelli, E., Borghi, A. M., Parisi, D., & Baldassarre, G. (2010b). A Reinforcement Learning Model of Reaching Integrating Kinematic and Dynamic Control in a Simulated Arm Robot. In: IEEE International Conference on Development and Learning (ICDL2010), IEEE, Piscataway, NJ, pp 211–218.

  • Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of The Royal Society B-Biological Sciences, 362, 1585–1599.

    Article  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron, 45, 801–814.

    Article  PubMed  Google Scholar 

  • Clark, A. (1996). Being there–Putting brain, body and world together again. Cambridge: MIT Press.

    Google Scholar 

  • Culham, J. C., & Kanwisher, N. G. (2001). Neuroimaging of cognitive functions in human parietal cortex. Current Opinion in Neurobiology, 11, 157–163.

    Article  PubMed  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.

    Google Scholar 

  • Deco, G., & Rolls, E. T. (2003). Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex. European Journal of Neuroscience, 18, 2374–2390.

    Article  PubMed  Google Scholar 

  • Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision–versus power-grip tasks: An fMRI study. Journal of Neurophysiology, 83, 528–536.

    PubMed  Google Scholar 

  • Ellis, R., Tucker, M., Symes, E., & Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with non selected objects? Journal of Experimental Psychology: Human Perception and Performance, 33, 670–691.

    Article  PubMed  Google Scholar 

  • Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological Review, 109, 545–572.

    Article  PubMed  Google Scholar 

  • Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interaction in primate control of grasping. Neural Networks, 11, 1277–1303.

    Article  PubMed  Google Scholar 

  • Feldman, A. G. (1986). Once more on the equilibrium-point hypothesis (lambda model) for motor control. Journal of Motor Behavior, 18, 17–54.

    PubMed  Google Scholar 

  • Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Fuster, J. M. (2001). The prefrontal cortex–an update: Time is of the essence. Neuron, 30, 319–333.

    Article  PubMed  Google Scholar 

  • Galpin, A., Tipper, S. P., Dick, J. P., & Poliakoff, E. (2010). Object affordance and spatial-compatibility effects in Parkinson’s disease. Cortex, 47, 332–341.

    Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Grèzes, J., Tucker, M., Armony, J., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience, 17, 2735–2740.

    Article  PubMed  Google Scholar 

  • Grill-Spector, K. (2008). Object perception: Physiology. In B. Goldstein (Ed.), Encyclopedia of perception (pp. 648–653). Sage Publications.

  • Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27, 649–677.

    Article  PubMed  Google Scholar 

  • Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.

    Article  PubMed  Google Scholar 

  • Hubel, D. H. (1988). Eye, brain and vision. Scientific American Books: New York.

    Google Scholar 

  • Iberall, T., & Arbib, M. A. (1990). Schemas for the control of hand movements: An essay on cortical localization. In M. A. Goodale (Ed.), Vision and action: The control of grasping (pp. 163–180). Norwood: Ablex Publishing.

    Google Scholar 

  • Jahanshahi, M., Jenkins, H., Brown, R. G., Marsden, C. D., Passingham, R. E., & Brooks, D. J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with pet and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.

    Article  PubMed  Google Scholar 

  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–246.

    Article  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (2000). Principles of Neural Science. New York: McGraw-Hill.

    Google Scholar 

  • Knight, R. T., Staines, W. R., Swickc, D., & Chaoc, L. L. (1999). Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica, 101, 159–178.

    Article  PubMed  Google Scholar 

  • Kohonen, T. (1997). Self-Organizing Maps (Second Edition ed.). Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Lang, A., & Lozano, A. (1998). Parkinson’s disease. New England Journal of Medicine, 339, 1044–1053.

    Article  PubMed  Google Scholar 

  • Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9574–9578.

    Article  PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.

    Article  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of premotor cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Milner, D. A., & Goodale, M. A. (1995). The Visual Brain in Action. Oxford: Oxford University Press.

    Google Scholar 

  • Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83, 2580–2601.

    PubMed  Google Scholar 

  • Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.

    Article  PubMed  Google Scholar 

  • Noë, A. (2004). Action in perception. In H. Putnam & N. Block (Eds.), Perception (Vol. 37). MIT Press.

  • Nolfi, S. (2009). Behavior and cognition as a complex adaptive system: Insights from robotic experiments. In C. Hooker (Ed.), Handbook of the Philosophy of Science. Volume 10: Philosophy of Complex Systems. General editors: Dov M. Gabbay, Paul Thagard and John Woods. Elsevier.

  • Oguro, H., Ward, R., Bracewel, M., Hindle, J., & Rafal, R. (2009). Automatic activation of motor programs by object affordances in patients with Parkinson’s disease. Neuroscience Letters, 9, 856–869.

    Google Scholar 

  • Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp learning: A computational model. Experimental Brain Research, 158, 480–503.

    Article  Google Scholar 

  • Parisi, D., Ceccon, F., & Nolfi, S. (1990). Econets: Neural networks that learn in an environment. Network, 1, 149–168.

    Article  Google Scholar 

  • Plunkett, K., & Elman, J. L. (1997). Exercises in rethinking innateness: A handbook for connectionist simulations. Cambridge: The MIT Press.

    Google Scholar 

  • Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing and population codes. Nature Reviews Neuroscience, 1, 125–132.

    Article  PubMed  Google Scholar 

  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 1009–1023.

    Article  PubMed  Google Scholar 

  • Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., et al. (2010). Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nature Reviews Neuroscience, 11, 760–772.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: From sight to action. Current Opinion in Neurobiology, 7, 562–567.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Luppino, G., & Matelli, M. (1998). The organization of the cortical motor system: New concepts. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 106, 283–296.

    Google Scholar 

  • Simon, O., Mangin, J. F., Cohen, L., Bihan, D. L., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.

    Article  PubMed  Google Scholar 

  • Sobel, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing, Presentation for Stanford Artificial Project.

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Doder’s method. In W. G. Koster (Ed.), Attention and Performance II. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Tucker, M., & Ellis, R. (2001). The potentiation of grasp types during visual object categorization. Visual Cognition, 8, 769–800.

    Article  Google Scholar 

  • Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116, 185–203.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: MIT Press.

    Google Scholar 

  • Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B., Bakircioglu, M., et al. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 41, 1359–1378.

    Article  PubMed  Google Scholar 

  • Vinberg, J., & Grill-Spector, K. (2008). Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. Journal of Neurophysiology, 99, 1380–1393.

    Article  PubMed  Google Scholar 

  • Weiner, K. S., Grill-Spector (2012) Neural representations of faces and limbs neighbor in human high-level visual cortex: Evidence for a new organization principle (accepted to this special issue).

Download references

Acknowledgments

This research was supported by the EU funded Projects “ROSSI–Emergence of communication in RObots through Sensorimotor and Social Interaction”, contract no. FP7-STREP-216125, “IM-CLeVeR–Intrinsically Motivated Cumulative Learning Versatile Robots”, contract no. FP7-IP -231722, “iTalk–Integration and Transfer of Action and Language Knowledge in Robots”, contract no. FP7-ICT-214668, and “VALUE–Vision, Action, and Language Unified by Embodiment”, EPSRC Grant EP/F026471. We thank Prof. Roberto Bolzani for helping in statistical data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Caligiore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caligiore, D., Borghi, A.M., Parisi, D. et al. How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS. Psychological Research 77, 7–19 (2013). https://doi.org/10.1007/s00426-012-0424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0424-1

Keywords

Navigation