Skip to main content

Representing others’ actions: the role of expertise in the aging mind

Abstract

A large body of evidence suggests that action execution and action observation share a common representational domain. To date, little is known about age-related changes in these action representations that are assumed to support various abilities such as the prediction of observed actions. The purpose of the present study was to investigate (a) how age affects the ability to predict the time course of observed actions; and (b) whether and to what extent sensorimotor expertise attenuates age-related declines in prediction performance. In a first experiment, older adults predicted the time course of familiar everyday actions less precisely than younger adults. In a second experiment, younger and older figure skating experts as well as age-matched novices were asked to predict the time course of figure skating elements and simple movement exercises. Both young age and sensorimotor expertise had a positive influence on prediction performance of figure skating elements. The expertise-related benefit did not show a transfer to movement exercises. Together, the results suggest a specific decline of action representations in the aging mind. However, extensive sensorimotor experience seems to enable experts to represent actions from their domain of expertise more precisely even in older age.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353–367.

    PubMed  Article  Google Scholar 

  • Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.

    PubMed  Article  Google Scholar 

  • Baddeley, A., Emslie, H., & Nimmo-Smith, I. (1993). The Spot-the-Word test: A robust estimate of verbal intelligence based on lexical decision. British Journal of Clinical Psychology, 32, 55–65.

    PubMed  Article  Google Scholar 

  • Baltes, P. B., Staudinger, U. M., & Lindenberger, U. (1999). Lifespan psychology: Theory and application to intellectual functioning. Annual Review of Psychology, 50, 471–507.

    PubMed  Article  Google Scholar 

  • Bennett, P. J., Sekuler, R., & Sekuler, A. B. (2007). The effects of aging on motion detection and direction identification. Vision Research, 47(6), 799–809.

    PubMed  Article  Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100.

    PubMed  Article  Google Scholar 

  • Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.

    PubMed  Article  Google Scholar 

  • Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.

    PubMed  Article  Google Scholar 

  • Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. Neuroimage, 50(3), 1148–1167.

    PubMed  Article  Google Scholar 

  • Celnik, P., Stefan, K., Hummel, F., Duque, J., Classen, J., & Cohen, L. G. (2006). Encoding a motor memory in the older adult by action observation. Neuroimage, 29(2), 677–684.

    PubMed  Article  Google Scholar 

  • Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.

    PubMed  Article  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295–301.

    PubMed  Article  Google Scholar 

  • Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. Neuroimage, 31(3), 1257–1267.

    PubMed  Article  Google Scholar 

  • Cross, E. S., Stadler, W., Parkinson, J., Schütz-Bosbach, S., & Prinz, W. (2011). The influence of visual training on predicting complex action sequences. Human Brain Mapping, doi:10.1002/hbm.21450.

  • Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior–anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209.

    PubMed  Article  Google Scholar 

  • de Vignemont, F., & Haggard, P. (2008). Action observation and execution: What is shared? Social Neuroscience, 3(3), 421–433.

    PubMed  Article  Google Scholar 

  • Dennis, N. A., & Cabeza, R. (2008). Neuroimaging of healthy cognitive aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (3rd ed. ed., pp. 1–54). New York: Psychology Press.

    Google Scholar 

  • Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception—action coupling affect natural anticipatory performance? Perception, 32(9), 1127–1139.

    PubMed  Article  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    PubMed  Article  Google Scholar 

  • Gabbard, C., Caçola, P., & Cordova, A. (2010). Is there an advanced aging effect on the ability to mentally represent action? Archives of Gerontology and Geriatrics. doi:10.1016/j.archger.2010.10.006.

  • Gescheider, G. A. (1997). The classical psychophysical methods. In G. A. Gescheider (Ed.), Psychophysics: The fundamentals (3rd ed. ed., pp. 45–72). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Supplement 2), T22–T32.

    PubMed  Article  Google Scholar 

  • Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156(1), 97–117.

    PubMed  Article  Google Scholar 

  • Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.

    PubMed  Article  Google Scholar 

  • Heuninckx, S., Wenderoth, N., Debaere, F., Peeters, R., & Swinnen, S. P. (2005). Neural basis of aging: The penetration of cognition into action control. The Journal of Neuroscience, 25(29), 6787–6796.

    PubMed  Article  Google Scholar 

  • Heuninckx, S., Wenderoth, N., & Swinnen, S. P. (2008). Systems neuroplasticity in the aging brain: Recruiting additional neural resources for successful motor performance in elderly persons. The Journal of Neuroscience, 28(1), 91–99.

    PubMed  Article  Google Scholar 

  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65.

    PubMed  Article  Google Scholar 

  • Hommel, B., Muesseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(05), 849–878.

    PubMed  Article  Google Scholar 

  • Horton, S., Baker, J., & Schorer, J. (2008). Expertise and aging: Maintaining skills through the lifespan. European Review of Aging and Physical Activity, 5(2), 89–96.

    Article  Google Scholar 

  • Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PloS Biology, 3(3), 529–535.

    Article  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14(1), 103–109.

    Article  Google Scholar 

  • Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.

    PubMed  Article  Google Scholar 

  • Kramer, A. F., Bherer, L., Colcombe, S. J., Dong, W., & Greenough, W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. Journals of Gerontology Series A—Biological Sciences and Medical Sciences, 59(9), 940–957.

    Article  Google Scholar 

  • Krampe, R. T. (2002). Aging, expertise and fine motor movement. Neuroscience and Biobehavioral Reviews, 26(7), 769–776.

    PubMed  Article  Google Scholar 

  • Krampe, R. T., & Charness, N. (2006). Aging and expertise. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 723–742). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Krampe, R. T., & Ericsson, K. A. (1996). Maintaining excellence: Deliberate practice and elite performance in young and older pianists. Journal of Experimental Psychology: General, 125(4), 331–359.

    Article  Google Scholar 

  • Léonard, G., & Tremblay, F. (2007). Corticomotor facilitation associated with observation, imagery and imitation of hand actions: A comparative study in young and old adults. Experimental Brain Research, 177(2), 167–175.

    Article  Google Scholar 

  • Mann, D. T. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: A meta-analysis. Journal of Sport and Exercise Psychology, 29(4), 457–478.

    PubMed  Google Scholar 

  • Maryott, J., & Sekuler, R. (2009). Age-related changes in imitating sequences of observed movements. Psychology and Aging, 24(2), 476–486.

    PubMed  Article  Google Scholar 

  • Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Das, S., Callicott, J. H., et al. (2002). Neurophysiological correlates of age-related changes in human motor function. Neurology, 58(4), 630–635.

    PubMed  Article  Google Scholar 

  • McHorney, C. A., Ware, J. E., & Raczek, A. E. (1993). The MOS 36-item short-form health survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical Care, 31(3), 247–263.

    PubMed  Article  Google Scholar 

  • Mulder, T., Hochstenbach, J. B. H., van Heuvelen, M. J. G., & den Otter, A. R. (2007). Motor imagery: The relation between age and imagery capacity. Human Movement Science, 26(2), 203–211.

    PubMed  Article  Google Scholar 

  • Müller, S., Abernethy, B., & Farrow, D. (2006). How do world-class cricket batsmen anticipate a bowler’s intention? The Quarterly Journal of Experimental Psychology, 59(12), 2162–2186.

    PubMed  Article  Google Scholar 

  • Nedelko, V., Hassa, T., Hamzei, F., Weiller, C., Binkofski, F., Schoenfeld, M. A. l, et al. (2010). Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. Restorative Neurology and Neuroscience, 28(6), 737–747.

    PubMed  Google Scholar 

  • Norman, J. F., Payton, S. M., Long, J. R., & Hawkes, L. M. (2004). Aging and the perception of biological motion. Psychology and Aging, 19(1), 219–225.

    PubMed  Article  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    PubMed  Article  Google Scholar 

  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320.

    PubMed  Article  Google Scholar 

  • Park, D. C., & Reuter-Lorenz, P. A. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.

    PubMed  Article  Google Scholar 

  • Perrett, D. I., Xiao, D. K., Barraclough, N. E., Keysers, C., & Oram, M. W. (2009). Seeing the future: Natural image sequences produce “anticipatory” neuronal activity and bias perceptual report. The Quarterly Journal of Experimental Psychology, 62(11), 2081–2104.

    PubMed  Article  Google Scholar 

  • Personnier, P., Kubicki, A., Laroche, D., & Papaxanthis, C. (2010). Temporal features of imagined locomotion in normal aging. Neuroscience Letters, 476(3), 146–149.

    PubMed  Article  Google Scholar 

  • Personnier, P., Paizis, C., Ballay, Y., & Papaxanthis, C. (2008). Mentally represented motor actions in normal aging: II. The influence of the gravito-inertial context on the duration of overt and covert arm movements. Behavioural Brain Research, 186(2), 273–283.

    PubMed  Article  Google Scholar 

  • Pilz, K. S., Bennett, P. J., & Sekuler, A. B. (2010). Effects of aging on biological motion discrimination. Vision Research, 50(2), 211–219.

    PubMed  Article  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.

    Article  Google Scholar 

  • Prinz, W., & Rapinett, G. (2008). Filling the gap: Dynamic representation of occluded action. In F. Morganti, A. Carassa, & G. Riva (Eds.), Enacting intersubjectivity: A cognitive and social perspective on the study of interactions (pp. 223–236). Amsterdam: IOS Press.

    Google Scholar 

  • Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30(6), 730–748.

    PubMed  Article  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    PubMed  Article  Google Scholar 

  • Roudaia, E., Bennett, P. J., Sekuler, A. B., & Pilz, K. S. (2010). Spatiotemporal properties of apparent motion perception and aging. Journal of Vision, 10(14), 1–15.

    Article  Google Scholar 

  • Saimpont, A., Pozzo, T., & Papaxanthis, C. (2009). Aging affects the mental rotation of left and right hands. PLoS ONE, 4(8), e6714.

    PubMed  Article  Google Scholar 

  • Salthouse, T. A. (2006). Mental exercise and mental aging: Evaluating the validity of the “Use it or lose It” hypothesis. Perspectives on Psychological Science, 1(1), 68–87.

    Article  Google Scholar 

  • Schippers, M. B., & Keysers, C. (2011). Mapping the flow of information within the putative mirror neuron system during gesture observation. Neuroimage, 57(1), 37–44.

    PubMed  Article  Google Scholar 

  • Schorer, J., & Baker, J. (2009). An exploratory study of aging and perceptual-motor expertise in handball goalkeepers. Experimental Aging Research, 35(1), 1–19.

    PubMed  Article  Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007). Prospective coding in event representation. Cognitive Processing, 8(2), 93–102.

    PubMed  Article  Google Scholar 

  • Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin and Review, 16(1), 170–175.

    PubMed  Article  Google Scholar 

  • Seidler, R. D., Bangert, A. S., Anguera, J. A., & Quinn-Walsh, C. M. (2007). Motor Control. In J. E. Birren (Ed.), Encyclopedia of gerontology: Age, aging and the aged (2nd ed., Vol. 2 (pp. 228–235). New York: Elsevier.

    Google Scholar 

  • Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., et al. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721–733.

    PubMed  Article  Google Scholar 

  • Skoura, X., Papaxanthis, C., Vinter, A., & Pozzo, T. (2005). Mentally represented motor actions in normal aging: I. Age effects on the temporal features of overt and covert execution of actions. Behavioural Brain Research, 165(2), 229–239.

    PubMed  Article  Google Scholar 

  • Skoura, X., Personnier, P., Vinter, A., Pozzo, T., & Papaxanthis, C. (2008). Decline in motor prediction in elderly subjects: Right versus left arm differences in mentally simulated motor actions. Cortex, 44(9), 1271–1278.

    PubMed  Article  Google Scholar 

  • Snowden, R. J., & Kavanagh, E. (2006). Motion perception in the ageing visual system: Minimum motion, motion coherence, and speed discrimination thresholds. Perception, 35(1), 9–24.

    PubMed  Article  Google Scholar 

  • Sparenberg, P., Springer, A., & Prinz, W. (2011). Predicting others’ actions: Evidence for a constant time delay in action simulation. Psychological Research. doi:10.1007/s00426-011-0321-z.

  • Stadler, W., Schubotz, R. I., von Cramon, D. Y., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: Differential premotor cortex involvement. Human Brain Mapping, 32(5), 677–687.

    PubMed  Article  Google Scholar 

  • Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20(11), 2511–2521.

    PubMed  Article  Google Scholar 

  • Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, S. M. (2011). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research. doi:10.1007/s00426-011-0383-y.

  • Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage, 48(3), 564–584.

    PubMed  Article  Google Scholar 

  • Ware, J. E., Kosinski, M., Bayliss, M. S., McHorney, C. A., Rogers, W. H., & Raczek, A. E. (1995). Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: Summary of results from the medical outcomes study. Medical Care, 33(4), AS264–AS279.

    PubMed  Google Scholar 

  • Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.

    PubMed  Article  Google Scholar 

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale—Third Edition (WAIS-III). San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.

    PubMed  Article  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences, 358(1431), 593–602.

    Article  Google Scholar 

  • Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), 729–732.

    Article  Google Scholar 

  • Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank Michaela Boldt, Felix Schneeweiß, Bettina Schnabel, Hans-Joachim Gehre, Luise Albrecht, Nils Ehlers, as well as Ingeburg Böhm and the athletes from the USG Chemnitz e. V., Olivia Dittrich and Martin Rappe, for their participation and invaluable help in developing the stimulus material for the experiments, Tanja Schorch for her great assistance in organizing the data collection, and two anonymous reviewers for their helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Diersch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diersch, N., Cross, E.S., Stadler, W. et al. Representing others’ actions: the role of expertise in the aging mind. Psychological Research 76, 525–541 (2012). https://doi.org/10.1007/s00426-011-0404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-011-0404-x

Keywords

  • Action Sequence
  • Action Category
  • Just Noticeable Difference
  • Movement Exercise
  • Perceptual Sensitivity