Psychological Research

, Volume 76, Issue 5, pp 611–625 | Cite as

Practice makes transfer of motor skills imperfect

  • Arnaud Boutin
  • Arnaud Badets
  • Robin N. Salesse
  • Udo Fries
  • Stefan Panzer
  • Yannick Blandin
Original Article


We investigated the practice-effects on motor skill transfer and the associated representational memory changes that occur during the within-practice and between-practice phases. In two experiments, participants produced extension–flexion movements with their dominant right arm for a limited or prolonged practice session arranged in either a single- or multi-session format. We tested the ability of participants to transfer the original pattern (extrinsic transformation) or the mirrored one (intrinsic transformation) to the non-dominant left arm, 10 min and 24 h after the practice sessions. Results showed that practice induces rapid motor skill improvements that are non-transferable irrespective of the amount of acquisition trials. Furthermore, the extrinsic component of the skill develops early and remains the dominant coding system during practice. Conversely, we found distinct between-practice memory changes: a limited practice induces an off-line development of the extrinsic component, whereas a prolonged practice session subserves the off-line development of the intrinsic component (Experiment 2). We provided further evidence that the long-term representation of the motor skill also depends on the nature of the practice session itself: the parsing of practice into multiple sessions narrows the effector-transfer capacities in comparison to a single session (Experiment 1). These findings yield theoretical and practical implications that are discussed in the context of recent motor skill learning models.


  1. Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., et al. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261–272.PubMedCrossRefGoogle Scholar
  2. Bapi, R. S., Doya, K., & Harner, A. M. (2000). Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Experimental Brain Research, 132, 149–162.CrossRefGoogle Scholar
  3. Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135, 240–251.PubMedCrossRefGoogle Scholar
  4. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.PubMedCrossRefGoogle Scholar
  5. Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 1118–1133.PubMedCrossRefGoogle Scholar
  6. Carpenter, S. K. (2009). Cue strength as a moderator of the testing effect: The benefits of elaborative retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1563–1569.PubMedCrossRefGoogle Scholar
  7. Censor, N., Dimyan, M. A., & Cohen, L. G. (2010). Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Current Biology, 20, 1545–1649.PubMedCrossRefGoogle Scholar
  8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hilsdale, Nj: Erlbaum.Google Scholar
  9. Cohen, D. A., Pascual-Leone, A., Press, D. Z., & Robertson, E. M. (2005). Off-line learning of motor skill memory: a double dissociation of goal and movement. Proceedings of the National Academy of Sciences of the United States of America, 102, 18237–18241.PubMedCrossRefGoogle Scholar
  10. Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.PubMedCrossRefGoogle Scholar
  11. Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., & Shadmehr, R. (2003). Learned dynamics of reaching movements generalize from dominant to nondominant arm. Journal of Neurophysiology, 89, 168–176.PubMedCrossRefGoogle Scholar
  12. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114–126.PubMedCrossRefGoogle Scholar
  13. Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 99, 1017–1022.PubMedCrossRefGoogle Scholar
  14. Dudai, Y. (2006). Reconsolidation: the advantage of being refocused. Current Opinion in Neurobiology, 16, 174–178.PubMedCrossRefGoogle Scholar
  15. Dudai, Y., & Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron, 44, 93–100.PubMedCrossRefGoogle Scholar
  16. Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., et al. (1999). Parallel neural networks for learning sequential procedures. Trends in Neuroscience, 22, 464–471.CrossRefGoogle Scholar
  17. Hikosaka, O., Rand, M. K., Nakamura, K., Miyachi, S., Kitaguchi, K., Sakai, K., et al. (2002). Long-term retention of motor skill in macaque monkeys and humans. Experimental Brain Research, 147, 494–504.CrossRefGoogle Scholar
  18. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155–158.PubMedCrossRefGoogle Scholar
  19. Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. (1998). The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 861–868.PubMedCrossRefGoogle Scholar
  20. Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339.PubMedCrossRefGoogle Scholar
  21. Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.CrossRefGoogle Scholar
  22. Kleiner, M., Brainard, D., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36 (ECVP Abstract Supplement).Google Scholar
  23. Korman, M., Raz, N., Flash, T., & Karni, A. (2003). Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proceedings of the National Academy of Sciences of the United States of America, 100, 12492–12497.PubMedCrossRefGoogle Scholar
  24. Kovacs, A. J., Boyle, J., Gruetzmatcher, N., & Shea, C. H. (2010). Coding of on-line and pre-planned movement sequences. Acta Psychologica, 133, 119–126.PubMedCrossRefGoogle Scholar
  25. Kovacs, A. J., Han, D.-W., & Shea, C. H. (2009a). The representation of movement sequences is related to task characteristics. Acta Psychologica, 132, 54–61.PubMedCrossRefGoogle Scholar
  26. Kovacs, A. J., Muehlbauer, T., & Shea, C. H. (2009b). The coding of movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 35, 390–407.PubMedCrossRefGoogle Scholar
  27. Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2, 1026–1031.PubMedCrossRefGoogle Scholar
  28. Krakauer, J. W., & Shadmehr, R. (2006). Consolidation of motor memory. Trends in Neurosciences, 29, 58–64.PubMedCrossRefGoogle Scholar
  29. Lange, R. K., Godde, B., & Braun, C. (2004). EEG correlates of coordinate processing during intermanual transfer. Experimental Brain Research, 159, 161–171.CrossRefGoogle Scholar
  30. Li, C. S. R., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron, 30, 593–607.PubMedCrossRefGoogle Scholar
  31. McDaniel, M. A., & Masson, M. E. J. (1985). Alterning memory representations through retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 11, 371–385.CrossRefGoogle Scholar
  32. McDaniel, M. A., Roediger, H. L., I. I. I., & McDermott, K. B. (2007). Generalizing test-enhanced learning from the laboratory to the classroom. Psychonomic Bulletin & Review, 14, 200–206.CrossRefGoogle Scholar
  33. McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287, 248–251.PubMedCrossRefGoogle Scholar
  34. Panzer, S., Krueger, M., Muehlbauer, T., Kovacs, A. J., & Shea, C. H. (2009). Inter-manual transfer and practice: coding of simple motor sequences. Acta Psychologica, 131, 99–109.PubMedCrossRefGoogle Scholar
  35. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442.PubMedCrossRefGoogle Scholar
  36. Przybyslawski, J., & Sara, S. J. (1997). Reconsolidation of memory after its reactivation. Behavioural Brain Research, 84, 241–246.PubMedCrossRefGoogle Scholar
  37. Robertson, E. M. (2009). From creation to consolidation: A novel framework for memory processing. PLoS Biology, 7, 11–19.CrossRefGoogle Scholar
  38. Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004a). Current concepts in procedural consolidation. Nature Reviews Neuroscience, 5, 576–582.PubMedCrossRefGoogle Scholar
  39. Robertson, E. M., Pascual-Leone, A., & Press, D. Z. (2004b). Awareness modifies the skill-learning benefits of sleep. Current Biology, 14, 208–212.PubMedGoogle Scholar
  40. Robertson, E. M., Press, D. Z., & Pascual-Leone, A. (2005). Off-line learning and the primary motor cortex. The Journal of Neuroscience, 25, 6372–6378.PubMedCrossRefGoogle Scholar
  41. Roediger, H. L., I. I. I., & Butler, A. C. (2010). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15, 20–27.PubMedCrossRefGoogle Scholar
  42. Roediger, H. L., I. I. I., & Karpicke, J. D. (2006a). Test-enhanced learning: taking memory tests improves long-term retention. Psychological Science, 17, 249–255.PubMedCrossRefGoogle Scholar
  43. Roediger, H. L., I. I. I., & Karpicke, J. D. (2006b). The power of testing memory: basic research and implications for educational practice. Perspectives on Psychological Science, 3, 181–210.CrossRefGoogle Scholar
  44. Rohrer, D., Taylor, K., & Sholar, B. (2010). Tests enhance the transfer of learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 233–239.PubMedCrossRefGoogle Scholar
  45. Sainburg, R. L. (2005). Handedness: differential specializations for control of trajectory and position. Exercise and Sport Sciences Reviews, 33, 206–213.PubMedCrossRefGoogle Scholar
  46. Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review of Neuroscience, 23, 393–415.PubMedCrossRefGoogle Scholar
  47. Sara, S. J. (2000). Retrieval and reconsolidation: toward a neurobiology of remembering. Learning and Memory, 7, 73–84.PubMedCrossRefGoogle Scholar
  48. Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821–825.PubMedCrossRefGoogle Scholar
  49. Soechting, J. F., & Flanders, M. (1989). Errors in pointing are due to approximations in sensorimotor transformations. Journal of Neurophysiology, 62, 595–608.PubMedGoogle Scholar
  50. Steele, C. J., & Penhune, V. B. (2010). Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. The Journal of Neuroscience, 30, 8332–8341.PubMedCrossRefGoogle Scholar
  51. Stickgold, R., & Walker, M. P. (2007). Sleep-dependent memory consolidation and reconsolidation. Sleep Medicine, 8, 331–343.PubMedCrossRefGoogle Scholar
  52. Stöckel, T., Weigelt, M., & Krug (2011). Acquisition of a complex basketball dribbling task in school children as a function of bilateral practice order. Research Quarterly for Exercise and Sport, 82, 188–197.Google Scholar
  53. Trempe, M., & Proteau, L. (2010). Distinct consolidation outcomes in a visuomotor adaptation task: off-line leaning and persistent after-effect. Brain and Cognition, 73, 135–145.PubMedCrossRefGoogle Scholar
  54. Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78, 553–564.PubMedCrossRefGoogle Scholar
  55. Walker, M. P., Brakefield, T., Hobson, J. A., & Stickgold, R. (2003). Dissociable stages of human memory consolidation and reconsolidation. Nature, 425, 616–620.PubMedCrossRefGoogle Scholar
  56. Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44, 121–133.PubMedCrossRefGoogle Scholar
  57. Wang, J., & Sainburg, R. L. (2006). Interlimb transfer of visuomotor rotations depends on handedness. Experimental Brain Research, 175, 223–230.CrossRefGoogle Scholar
  58. Wheeler, M. A., Ewers, M., & Buonanno, J. F. (2003). Different rates of forgetting following study versus test trials. Memory, 11, 571–580.PubMedCrossRefGoogle Scholar
  59. Witt, K., Margraf, N., Bieber, C., Born, J., & Deuschl, G. (2010). Sleep consolidates the effector-independent representation of a motor skill. Neuroscience, 171, 227–234.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Arnaud Boutin
    • 1
  • Arnaud Badets
    • 1
  • Robin N. Salesse
    • 1
  • Udo Fries
    • 2
  • Stefan Panzer
    • 3
  • Yannick Blandin
    • 1
  1. 1.National Centre of Scientific Research, Centre de Recherches sur la Cognition et l’Apprentissage, CeRCA, CNRS UMR 6234, MSHS. Bât A5University of PoitiersPoitiersFrance
  2. 2.Department of Human Movement ScienceUniversity of LeipzigLeipzigGermany
  3. 3.IfADo, Leibniz Research Centre for Working Environment and Human FactorsDortmundGermany

Personalised recommendations